福田の数学〜明治大学2024理工学部第1問(1)〜高次方程式と整数解 - 質問解決D.B.(データベース)

福田の数学〜明治大学2024理工学部第1問(1)〜高次方程式と整数解

問題文全文(内容文):
$k,l,m$ を定数とする。関数 $f(x)=4x^3+kx^2-lx+m$ は次の $3$ つの条件を満たすとする。
・ $k,l,m$ は $0$ 以上の整数である。
・ $x$ に関する方程式 $f(x)=0$ は $\frac{1}{2}$ を解にもつ。
・ $f(x)$ を微分して得られる整式を $f'(x)$ とするとき、 $f'(x)$ を $x+2$ で割ったときの余りは $41$ である。
このとき、$k=\fbox{ア},$ $l=\fbox{イ},$ $m=\fbox{ウ}$ であり、方程式 $f(x)=0$ の $\frac{1}{2}$ 以外の解は $\displaystyle -\frac{\fbox{エ}}{\fbox{オ}}$ と $\fbox{カ}$ である。
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$k,l,m$ を定数とする。関数 $f(x)=4x^3+kx^2-lx+m$ は次の $3$ つの条件を満たすとする。
・ $k,l,m$ は $0$ 以上の整数である。
・ $x$ に関する方程式 $f(x)=0$ は $\frac{1}{2}$ を解にもつ。
・ $f(x)$ を微分して得られる整式を $f'(x)$ とするとき、 $f'(x)$ を $x+2$ で割ったときの余りは $41$ である。
このとき、$k=\fbox{ア},$ $l=\fbox{イ},$ $m=\fbox{ウ}$ であり、方程式 $f(x)=0$ の $\frac{1}{2}$ 以外の解は $\displaystyle -\frac{\fbox{エ}}{\fbox{オ}}$ と $\fbox{カ}$ である。
投稿日:2024.09.06

<関連動画>

【高校数学あるある】二項定理と1の3乗根ωの融合問題 #Shorts

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x^2+x+1=0$の解の一つを$\omega$とするとき

${}_9 \mathrm{ C }_0+{}_9 \mathrm{ C }_1\omega+{}_9 \mathrm{ C }_2\omega+……+{}_9 \mathrm{ C }_9\omega^9$の値を求めよ。
この動画を見る 

【難問解説】「解と係数の関係」と「判別式」を利用した最大・最小問題【半分 for you 動画】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
「解と係数の関係」と「判別式」を利用した最大・最小問題
-----------------
実数$x、y、z$は$x+y+z=0,x^2-x-1=yz$を満たす。
$x^3+y^3+z^3$のn最大値・最小値と、そのときの$x$の値を求めよ。
この動画を見る 

福田のおもしろ数学192〜連立方程式と対称式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式
指導講師: 福田次郎
問題文全文(内容文):
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + y^2 = 1 \\
x^3 + y^3 = 1
\end{array}
\right.
\end{eqnarray}$を解いて下さい。
この動画を見る 

#11数検1級1次過去問

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#数学検定#数学検定準1級
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$
$x^4-4x^3+x^2-3=0$を解け.
この動画を見る 

福田の数学〜剰余類と合同式を練習だ〜早稲田大学2023年商学部第3問〜7で割り切れる条件と91で割り切れる条件

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ $n$を正の整数とする。次の設問に答えよ。
(1)$n^2$+$n$+1が7で割り切れるような$n$を小さい順に並べるとき、100番目の整数$n$を求めよ。
(2)$n^2$+$n$+1が91で割り切れるような$n$を小さい順に並べるとき、100番目の整数$n$を求めよ。
この動画を見る 
PAGE TOP