福田の1.5倍速演習〜合格する重要問題001〜東京大学2015年理系問題1〜放物線の通過範囲 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題001〜東京大学2015年理系問題1〜放物線の通過範囲

問題文全文(内容文):
正の実数aに対して、座標平面上で次の放物線を考える。
$C:\ y=ax^2+\frac{1-4a^2}{4a}$aが正の実数全体を動くとき、Cの通過する領域を図示せよ。

2015東京大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
問題文全文(内容文):
正の実数aに対して、座標平面上で次の放物線を考える。
$C:\ y=ax^2+\frac{1-4a^2}{4a}$aが正の実数全体を動くとき、Cの通過する領域を図示せよ。

2015東京大学理系過去問
投稿日:2022.11.16

<関連動画>

【高校数学】 数Ⅱ-129 指数関数③・方程式編

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の方程式を解こう。

①$8^{x}=4$

②$(\displaystyle \frac{1}{3})^{x}=9$

③$4^{2x-1}=2^{3x-5}$

④$3^{2x}-3^{x+1}-54=0$

⑤$2^{2x+1}-9・2^{x}+4=0$
この動画を見る 

琉球大 微分・積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#琉球大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
琉球大学過去問題
-2<a<2
$y=x^2+ax+1$に原点から引いた2本の接線の接点をP,Qとする。
(1)2つの接点P,Qの座標を求めよ。
(2)2本の接線と放物線で囲まれた図形の面積
この動画を見る 

【高校数学】 数Ⅱ-172 定積分と面積①

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の曲線や直線で囲まれた図形の面積Sを求めよう。

①$y=x^2+1$、x軸、$x=-1、x=2$

②$y=x^2+2x$、x軸、$x=1、x=3$

③$y=-x^2+4$、x軸
この動画を見る 

【数Ⅱ】図形と方程式:点と直線の距離(最小値):平面上の2点をA(1,1),B(2,3)とする。点Pが放物線y=x²+4x+10上を動くとき△PABの面積の最小値を求めよ。

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面上の2点をA(1,1),B(2,3)とする。点Pが放物線$y=x^2+4x+10$上を動くとき△PABの面積の最小値を求めよ。
この動画を見る 

【解答にミスあり概要欄】大学入試問題#322 慶應義塾大学(2021) #三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$-\displaystyle \frac{\pi}{2} \leqq \theta \leqq \displaystyle \frac{\pi}{2}$
$4\cos\displaystyle \frac{\theta}{2}(\cos\displaystyle \frac{\theta}{2}+\sin\displaystyle \frac{\theta}{2})$のとき
$\sin\theta$の値を求めよ。

出典:2021年慶應義塾大学 入試問題
この動画を見る 
PAGE TOP