福田の1.5倍速演習〜合格する重要問題001〜東京大学2015年理系問題1〜放物線の通過範囲 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題001〜東京大学2015年理系問題1〜放物線の通過範囲

問題文全文(内容文):
正の実数aに対して、座標平面上で次の放物線を考える。
$C:\ y=ax^2+\frac{1-4a^2}{4a}$aが正の実数全体を動くとき、Cの通過する領域を図示せよ。

2015東京大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
問題文全文(内容文):
正の実数aに対して、座標平面上で次の放物線を考える。
$C:\ y=ax^2+\frac{1-4a^2}{4a}$aが正の実数全体を動くとき、Cの通過する領域を図示せよ。

2015東京大学理系過去問
投稿日:2022.11.16

<関連動画>

【高校数学】三角関数のグラフの裏技~平行移動の場合~【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
グラフを書け
1⃣
$y=\sin \theta+1$

2⃣
$y=2\sin(2\theta-\displaystyle \frac{\pi}{3})+1$
この動画を見る 

10兵庫県教員採用試験(数学:2番 円と直線)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
2⃣$C:x^2+y^2=1,l:y=mx-2(m>0)$
は2点P,Qで交わる。
(1)$PQ=\sqrt 3$のときmを求めよ。
(2)△PQRが最大となる円C上の点Rの座標を求めよ。
*図は動画内参照
この動画を見る 

【高校数学】 数Ⅱ-71 2つの円①

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の2つの円の位置関係を、(2点で交わる・外接する・内接する・共有点がない)から選ぼう。

①$x^2+y^2=9, (x-4)^2+(y-3)^2=4$

②$x^2+y^2=9,x^2+(y+2)^2=1$

③$x^2+y^2-6x-8y=0, (x-9)^2+(y-4)^2=25$
この動画を見る 

大学入試問題#467「基本すぎる極限問題」 電気通信大学(2013) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{(1-\cos2x)\sin3x}{x^3}$

出典:2013年電気通信大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学理工学部2025第1問(1)〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$

(1)複素数平面上で、方程式

$\vert z+i \vert = 2 \vert z-\sqrt3 \vert$

を満たす点$z$全体が表す図形は、

中心が$\boxed{ア}$,半径が$\boxed{イ}$である。

$2025$年慶應義塾大学理工学部過去問題
この動画を見る 
PAGE TOP