岡山大 三次不等式 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

岡山大 三次不等式 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
岡山大学過去問題
(1)$x \leqq 0$において、常に$x^3+4x^2 \leqq ax+18$が成り立つaの範囲
(2)(1)で求めた範囲のaのうち最大のものを$a_0$
 $x^3+4x^2 \leqq a_0x+18$を解け
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#数学(高校生)#岡山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
岡山大学過去問題
(1)$x \leqq 0$において、常に$x^3+4x^2 \leqq ax+18$が成り立つaの範囲
(2)(1)で求めた範囲のaのうち最大のものを$a_0$
 $x^3+4x^2 \leqq a_0x+18$を解け
投稿日:2018.07.17

<関連動画>

高専数学 微積II #61(1)(2) 合成関数の微分法

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\dfrac{dz}{dt}$を求めよ.

(1)$z=\sin (3x+2y)$
$x=\dfrac{1}{t},y=\sqrt t$

(2)$z=\log(2x^2+xy+5y^2)$
$x=\cos t,y=\sin t$
この動画を見る 

数学「大学入試良問集」【10−5① 直線の通過領域の基礎】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の条件をみたす直線の通過領域を図示せよ。
(1)実数$t$が$0 \lt t \lt 1$をみたすときの直線$y=t(x-2)+3$の通過領域
(2)$t$が実数全体を動くときの直線$y=tx+t^2$の通過領域
この動画を見る 

【高校数学】 数Ⅱ-62 円と直線①

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の円の方程式を求めよう。

①中心が(1、2)、半径が3

②中心が原点、半径が4

③中心が(-1.2)で原点を通る

④中心が(-2.3)でX軸に接する

⑤中心が(4.-1)で点(1.1)を通る

⑥直径の両端が(-1.3). (1.-5)
この動画を見る 

福島大 3数の相加相乗平均の応用

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
${\left(\dfrac{1}{3}(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}) \right)}^{-1} \leqq \dfrac{a+b+c}{3},$
a,b,cは正の実数である.これを証明せよ.
この動画を見る 

福田のわかった数学〜高校2年生076〜三角関数(15)三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(15) 最大最小(5)
$y=4\sin^2x+3\sin x\cos x+\cos^2x (0 \leqq x \lt 2\pi)$の最大値、最小値と
そのときのxの値を求めよ。
この動画を見る 
PAGE TOP