【数Ⅰ】【数と式】因数分解1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【数と式】因数分解1 ※問題文は概要欄

問題文全文(内容文):
因数分解せよ
問1 3次の因数分解①
(1) $8x^3+1$ (2) $64a^3-27$ (3) $27x^3+125y^3$
問2 たすき掛け
(1) $abx^2-(a^2+b^2 )x-ab$ (2) $abx^2+(a^2-b^2 )xy-aby^2$
問3 置き換え
(1) $(x^2-x)^2-14(x^2-x)+24$ (2) $(x^2+2x)(x^2+2x-2)-3$
問4 3次の因数分解②
(1) $x^3+3x^2 y+3xy^2+y^3$ (2) $8a^3-12a^2 b+6ab^2-b^3$
チャプター:

0:04 本編:3次の因数分解① 
4:42 たすき掛け 
8:32 置き換え 
12:36 3次の因数分解②

単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
因数分解せよ
問1 3次の因数分解①
(1) $8x^3+1$ (2) $64a^3-27$ (3) $27x^3+125y^3$
問2 たすき掛け
(1) $abx^2-(a^2+b^2 )x-ab$ (2) $abx^2+(a^2-b^2 )xy-aby^2$
問3 置き換え
(1) $(x^2-x)^2-14(x^2-x)+24$ (2) $(x^2+2x)(x^2+2x-2)-3$
問4 3次の因数分解②
(1) $x^3+3x^2 y+3xy^2+y^3$ (2) $8a^3-12a^2 b+6ab^2-b^3$
投稿日:2024.11.05

<関連動画>

数学「大学入試良問集」【1−3 背理法・対偶】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
 (ⅰ)$\sqrt{ 2 }$が無理数であることを証明せよ。
 (ⅱ)実数$a$が$a^3+\alpha+1=0$を満たすとき、$\alpha$が無理数であることを証明せよ。

(2)
 (ⅰ)$n$を自然数とするとき、$n^3$が$3$の倍数ならば、$n$は$3$の倍数のなることを証明せよ。
 (ⅱ)$\sqrt[ 3 ]{ 3 }$が無理数であることを証明せよ。
この動画を見る 

大学入試問題#252 茨城大学(2012) #定積分

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#対数関数#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{log2}e^{|x|}e^xdx$を計算せよ。

出典:2012年茨城大学 入試問題
この動画を見る 

人生色々 補助線の引き方も色々(3通りの解説) A

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle ADB=?$
*図は動画内参照

2021福岡県
この動画を見る 

4乗根の有理化

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \left(1+\dfrac{1}{\sqrt[4]{8}+\sqrt{2}+\sqrt[4]{2}+1} \right)^{20}$
これを計算せよ.
この動画を見る 

【数Ⅰ】【データの分析】672、693、644、665、630、644でc=7、x₀=644、u=(x-x₀)/c として新たな変量uを作る。変量uとxの平均値、分散、標準偏差を求めよ。

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#データの分析#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
変量xのデータが次のように与えられている。
672,693、644、665、630、644
c=7、x₀=644、u=(x-x₀)/c として新たな変量uを作る。
(1)変量uのデータの平均値、分散、標準偏差を求めよ。
(2)変量xのデータの平均値、分散、標準偏差を求めよ。
この動画を見る 
PAGE TOP