福田の数学〜慶應義塾大学2021年環境情報学部第6問〜領域における最大 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年環境情報学部第6問〜領域における最大

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}} ある国の有識者会議が、経済活性化に資する公共サービスの供給量xと、医療・\\
公衆衛生に関する公共サービスの供給量yの組み合わせの検討を行っている。供給量\\
(x,y)は、予算やマンパワー、既存の法律など、さまざまな要因により、その実現可能性\\
に制約を受け、次の不等式を満たすものとする。\\
\left\{\begin{array}{1}
2x+5y \leqq 405 \ldots(1)\\
x^2+75y \leqq 6075 \ldots(2)\\
x \geqq 0 \ldots(3)\\
y \geqq 0 \ldots(4)\\
\end{array}\right.\\
\\
供給量(x,y)をx軸とy軸の2次元座標で表すと、実現可能な供給量の組合せ\\
(x,y)の値域は、0 \leqq x \leqq \boxed{\ \ アイ\ \ }の範囲で(1)と(4)を満たす(x,y)の部分の領域と、\\
\boxed{\ \ アイ\ \ } \leqq x \leqq \sqrt{\boxed{\ \ オカ\ \ }}の範囲で(2)と(4)を満たす(x,y)の部分の領域の2つ\\
からなることがわかる。\\
いま、有識者会議の目標がxyの最大化であるとすると、供給量の組合せを\\
(x,y)=(\boxed{\ \ キク\ \ },\boxed{\ \ ケコ\ \ })とする結論を得る。\\
次に、情勢の変化に伴って、上記の(1),(2),(3),(4)に新たな不等式\\
x+y \leqq 93  \ldots(5)\\
が加わったとすると、実現可能な(x,y)の領域は、0 \leqq x \leqq \boxed{\ \ サシ\ \ }の範囲で\\
(1)と(4)を満たす(x,y)の部分の領域と、\boxed{\ \ サシ\ \ } \leqq x \leqq \boxed{\ \ スセ\ \ }の範囲で\\
(5)と(4)を満たす(x,y)の部分の領域と、\boxed{\ \ スセ\ \ } \leqq x \leqq \boxed{\ \ ウエ\ \ }\sqrt{\boxed{\ \ オカ\ \ }}の範囲で\\
(2)と(4)を満たす(x,y)の部分の領域の3つに分けることができる。\\
また、政府の方針にそって、有識者会議の目標がx^2yの最大化に変更されたとすると、\\
供給量の組合せを\\
(x,y)=(\boxed{\ \ ソタ\ \ },\boxed{\ \ チツ\ \ })\\
とする結論を導くことになる。
\end{eqnarray}

2021慶應義塾大学環境情報学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}} ある国の有識者会議が、経済活性化に資する公共サービスの供給量xと、医療・\\
公衆衛生に関する公共サービスの供給量yの組み合わせの検討を行っている。供給量\\
(x,y)は、予算やマンパワー、既存の法律など、さまざまな要因により、その実現可能性\\
に制約を受け、次の不等式を満たすものとする。\\
\left\{\begin{array}{1}
2x+5y \leqq 405 \ldots(1)\\
x^2+75y \leqq 6075 \ldots(2)\\
x \geqq 0 \ldots(3)\\
y \geqq 0 \ldots(4)\\
\end{array}\right.\\
\\
供給量(x,y)をx軸とy軸の2次元座標で表すと、実現可能な供給量の組合せ\\
(x,y)の値域は、0 \leqq x \leqq \boxed{\ \ アイ\ \ }の範囲で(1)と(4)を満たす(x,y)の部分の領域と、\\
\boxed{\ \ アイ\ \ } \leqq x \leqq \sqrt{\boxed{\ \ オカ\ \ }}の範囲で(2)と(4)を満たす(x,y)の部分の領域の2つ\\
からなることがわかる。\\
いま、有識者会議の目標がxyの最大化であるとすると、供給量の組合せを\\
(x,y)=(\boxed{\ \ キク\ \ },\boxed{\ \ ケコ\ \ })とする結論を得る。\\
次に、情勢の変化に伴って、上記の(1),(2),(3),(4)に新たな不等式\\
x+y \leqq 93  \ldots(5)\\
が加わったとすると、実現可能な(x,y)の領域は、0 \leqq x \leqq \boxed{\ \ サシ\ \ }の範囲で\\
(1)と(4)を満たす(x,y)の部分の領域と、\boxed{\ \ サシ\ \ } \leqq x \leqq \boxed{\ \ スセ\ \ }の範囲で\\
(5)と(4)を満たす(x,y)の部分の領域と、\boxed{\ \ スセ\ \ } \leqq x \leqq \boxed{\ \ ウエ\ \ }\sqrt{\boxed{\ \ オカ\ \ }}の範囲で\\
(2)と(4)を満たす(x,y)の部分の領域の3つに分けることができる。\\
また、政府の方針にそって、有識者会議の目標がx^2yの最大化に変更されたとすると、\\
供給量の組合せを\\
(x,y)=(\boxed{\ \ ソタ\ \ },\boxed{\ \ チツ\ \ })\\
とする結論を導くことになる。
\end{eqnarray}

2021慶應義塾大学環境情報学部過去問
投稿日:2021.07.04

<関連動画>

福田の数学〜筑波大学2022年理系第6問〜複素数平面上の点の軌跡と最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$i$は虚数単位とする。次の条件$(\textrm{I}),(\textrm{II})$のどちらも満たす複素数z全体の集合を
Sとする。
$(\textrm{I})z$の虚部は正である。
$(\textrm{II})$複素数平面上の点$A(1),B(1-iz),C(z^2)$は一直線上にある。
このとき、以下の問いに答えよ。
(1)1でない複素数$\alpha$について、$\alpha$の虚部が正であることは、$\frac{1}{\alpha-1}$の虚部が
負であるための必要十分条件であることを示せ。
(2)集合Sを複素数平面上に図示せよ。
(3)$w=\frac{1}{z-1}$とする。zがSを動くとき、$|w+\frac{i}{\sqrt2}|$の最小値を求めよ。

2022筑波大学理系過去問
この動画を見る 

【数学】中高一貫校用問題集:図形と式:軌跡と方程式:2直線の交点の軌跡(直交する場合)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#図形と計量#図形と方程式#数学(高校生)
教材: #中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
mが実数全体を取って動くとき、$x+my-1=0,mx-y+2m=0$の交点Pの軌跡を求めよ
この動画を見る 

一橋大 整数解をもつ三次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$k$は整数である.
$x^3-13x+k=0$は$3$つの異なる整数解をもつ.$k$とこれらの整数解をすべて求めよ.

一橋大過去問
この動画を見る 

【わかりやすく】三角形の頂点Pの軌跡を求める問題(数学Ⅱ 図形と方程式)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
2点$A(-2,0),B(3,0)$と点$P$を頂点とする$\triangle PAB$が$PA:PB=2:3$を満たしながら変化するとき、点$P$の軌跡を求めよ。
この動画を見る 

複素数のいい問題 山形大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#解と判別式・解と係数の関係#数学(高校生)#山形大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
山形大学過去問題
複素数平面上の相異なる3点A(α),B(β),C(γ)において
$α^2+β^2+γ^2=αβ+βγ+αγ$が成り立つなら△ABCは正三角形であることを示せ
この動画を見る 
PAGE TOP