問題文全文(内容文):
$\boxed{5}$
(1)関数
$f(t)=\dfrac{t^2-1}{t^3} (t\neq 0)$
の増減を調べ、グラフの概形をかけ。
(2)実数$x,y,z$が、条件
$\begin{eqnarray}
\left\{
\begin{array}{l}
x \lt y \lt z \\
xyz \neq 0 \\\
x^3y^2-x^3=x^2y^3-y^3 \\\
y^3z^2-y^3=y^2z^3-z^3
\end{array}
\right.
\end{eqnarray}$
を満たしながら動くとき、
$x$が取り得る値の範囲を求めよ。
$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
$\boxed{5}$
(1)関数
$f(t)=\dfrac{t^2-1}{t^3} (t\neq 0)$
の増減を調べ、グラフの概形をかけ。
(2)実数$x,y,z$が、条件
$\begin{eqnarray}
\left\{
\begin{array}{l}
x \lt y \lt z \\
xyz \neq 0 \\\
x^3y^2-x^3=x^2y^3-y^3 \\\
y^3z^2-y^3=y^2z^3-z^3
\end{array}
\right.
\end{eqnarray}$
を満たしながら動くとき、
$x$が取り得る値の範囲を求めよ。
$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
単元:
#大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{5}$
(1)関数
$f(t)=\dfrac{t^2-1}{t^3} (t\neq 0)$
の増減を調べ、グラフの概形をかけ。
(2)実数$x,y,z$が、条件
$\begin{eqnarray}
\left\{
\begin{array}{l}
x \lt y \lt z \\
xyz \neq 0 \\\
x^3y^2-x^3=x^2y^3-y^3 \\\
y^3z^2-y^3=y^2z^3-z^3
\end{array}
\right.
\end{eqnarray}$
を満たしながら動くとき、
$x$が取り得る値の範囲を求めよ。
$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
$\boxed{5}$
(1)関数
$f(t)=\dfrac{t^2-1}{t^3} (t\neq 0)$
の増減を調べ、グラフの概形をかけ。
(2)実数$x,y,z$が、条件
$\begin{eqnarray}
\left\{
\begin{array}{l}
x \lt y \lt z \\
xyz \neq 0 \\\
x^3y^2-x^3=x^2y^3-y^3 \\\
y^3z^2-y^3=y^2z^3-z^3
\end{array}
\right.
\end{eqnarray}$
を満たしながら動くとき、
$x$が取り得る値の範囲を求めよ。
$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
投稿日:2025.05.13





