一橋大 三次方程式 - 質問解決D.B.(データベース)

一橋大 三次方程式

問題文全文(内容文):
$a,b,m$は整数である.$(b \neq 0)$
$f(x)=x^3+8x^2+mx+60$
$f(a+bi)=0$を満たすものが存在するような$m$を求めよ.そのときの解も求めよ.

2007一橋大過去問
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,m$は整数である.$(b \neq 0)$
$f(x)=x^3+8x^2+mx+60$
$f(a+bi)=0$を満たすものが存在するような$m$を求めよ.そのときの解も求めよ.

2007一橋大過去問
投稿日:2020.11.28

<関連動画>

ただの三次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$x(x+1)^2+(x+1)x^2=840$
この動画を見る 

横浜市立(医)3項間漸化式 良問再投稿

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#解と判別式・解と係数の関係#数列#漸化式#数学(高校生)#数B#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=a_2=1$ 一般項を求めよ
$a_{n+2}-5a_{n+1}+6a_n-6n=0$

出典:2016年横浜市立大学 医学部 過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題022〜一橋大学2016年度文系数学第5問〜ベクトルの絶対値の比の範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上のベクトル#解と判別式・解と係数の関係#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
平面上の2つのベクトル$\overrightarrow{ a }$と$\overrightarrow{ b }$は零ベクトルではなく、$\overrightarrow{ a }$と$\overrightarrow{ b }$のなす角度は
60°である。このとき
$r=\frac{|\overrightarrow{ a }+2\overrightarrow{ b }|}{|2\overrightarrow{ a }+\overrightarrow{ b }}$
のとりうる値の範囲を求めよ。

2016一橋大学文系過去問
この動画を見る 

大阪大の問題の背景 特に文系の人見てください

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#複素数平面#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$ \cos\dfrac{2}{7}\pi, \cos\dfrac{4}{7}\pi, \cos\dfrac{6}{7}\pi$を解にもつ
$3$次方程式$ x^3+ax^2+bx+c=0$を求めよ.*$ z^7=1$
(2)$ f(x)=8x^3+4x^2-4x-1$,$f\left(\cos\dfrac{2}{7}\pi \right)=0$を示せ.
この動画を見る 

複素数 学習院大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z$は複素数であり,$\dfrac{z-1-3i}{z-2}$が純虚数である.
$\vert z \vert$の最大値と最小値を求めよ.

学習院大過去問
この動画を見る 
PAGE TOP