福田の数学〜最大値を求める問題の3連発!〜北里大学2023年医学部第1問(2)〜領域における最大値 - 質問解決D.B.(データベース)

福田の数学〜最大値を求める問題の3連発!〜北里大学2023年医学部第1問(2)〜領域における最大値

問題文全文(内容文):
点$(x,y)$は$x^2+(y-1)^2 \leqq 1$の表す領域を動くとする。

$\displaystyle \frac{x-y-1}{x+y-3}$の最大値は?

$x(y-1)$の最大値は?

$\displaystyle \frac{x^2-6x+9}{y^2-2y-3}$の最大値は?
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
点$(x,y)$は$x^2+(y-1)^2 \leqq 1$の表す領域を動くとする。

$\displaystyle \frac{x-y-1}{x+y-3}$の最大値は?

$x(y-1)$の最大値は?

$\displaystyle \frac{x^2-6x+9}{y^2-2y-3}$の最大値は?
投稿日:2023.12.17

<関連動画>

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。直線と円の表す領域とが共有点をもつ条件の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
[1]座標平面上に点A(-8,0)をとる。また、不等式\\
x^2+y^2-4x-10y+4 \leqq 0\\
の表す領域をDとする。\\
\\
\\
(1)領域Dは、中心が点(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })、半径が\boxed{\ \ ウ\ \ }の円の\\
\boxed{\ \ エ\ \ }である。\\
\\
\\
\boxed{\ \ エ\ \ }の解答群\\
⓪ 周   ① 内部   ② 外部   \\
③ 周および内部   ④ 周および外部\\
\\  
\\
以下、点(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })をQとし、方程式\\
x^2+y^2-4x-10y+4=0\\
の表す図形をCとする。\\
\\
(2)点Aを通る直線と領域Dが共有点をもつのはどのようなときかを考えよう。\\
\\
(\textrm{i})(1)により、直線y=\boxed{\ \ オ\ \ }は点Aを通るCの接線の一つとなること\\
がわかる。\\
\\
太郎さんと花子さんは点Aを通るCのもう一つの接線について話している。\\
点Aを通り、傾きがkの直線をlとする。\\
\\
太郎:直線lの方程式はy=k(x+8)と表すことができるから、\\
これを\\
x^2+y^2-4x-10y+4=0\\
に代入することで接線を求められそうだね。\\
花子:x軸と直線AQのなす角のタンジェントに着目することでも\\
求められそうだよ。\\
\\
(\textrm{ii}) 太郎さんの求め方について考えてみよう。\\
y=k(x+8)をx^2+y^2-4x-10y+4=0に代入すると、\\
xについての2次方程式\\
(k^2+1)x^2+(16k^2-10k-4)x+64k^2-80k+4=0\\
が得られる。この方程式が\boxed{\ \ カ\ \ }ときのkの値が接線の傾きとなる。\\
\\
\boxed{\ \ カ\ \ }の解答群\\
⓪重解をもつ\\
①異なる2つの実数解をもち、1つは0である\\
②異なる2つの正の実数解をもつ\\
③正の実数解と負の実数解をもつ\\
④異なる2つの負の実数解をもつ\\
⑤異なる2つの虚数解をもつ\\
\\
(\textrm{iii})花子さんの求め方について考えてみよう。\\
x軸と直線AQのなす角を\theta(0 \lt \theta \leqq \frac{\pi}{2})とすると\\
\tan\theta=\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\\
であり、直線y=\boxed{\ \ オ\ \ }と異なる接線の傾きは\tan\boxed{\ \ ケ\ \ }\\
と表すことができる。\\
\\
\boxed{\ \ ケ\ \ }の解答群\\
⓪\theta   ①2\theta   ②(\theta+\frac{\pi}{2})\\
③(\theta-\frac{\pi}{2})   ④(\theta+\pi)   ⑤(\theta-\pi)\\
⑥(2\theta+\frac{\pi}{2})   ⑦(2\theta-\frac{\pi}{2})\\
\\
\\
(\textrm{iv})点Aを通るCの接線のうち、直線y=\boxed{\ \ オ\ \ }と異なる接線の傾き\\
をk_0とする。このとき、(\textrm{ii})または(\textrm{iii})の考え方を用いることにより\\
k_0=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\\
であることがわかる。\\
直線lと領域Dが共有点をもつようなkの値の範囲は\boxed{\ \ シ\ \ }である。\\
\\
\boxed{\ \ シ\ \ }の解答群\\
⓪k \gt k_0 ①k \geqq k_0\\
②k \lt k_0 ③k \leqq k_0\\
④0 \lt k \lt k_0 ⑤0 \leqq k \leqq k_0\\
\end{eqnarray}
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第1問(3)〜三角関数の最大最小の種類

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (3)関数f(\theta)=\cos2\theta+2\cos\thetaが0 \leqq \theta \leqq \pi の範囲で最小値をとるのは\theta=\boxed{\ \ ア\ \ }\\
のときであり、最大値を取るのは\theta=\boxed{\ \ イ\ \ }\ のときである。\hspace{70pt}
\end{eqnarray}
この動画を見る 

福田の一夜漬け数学〜多変数関数1文字固定(3)〜受験編

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#微分法と積分法#軌跡と領域#接線と増減表・最大値・最小値
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
三辺の長さがa,b,cである直方体を長さがbの一辺を回転軸として90°\\
回転させる。直方体が通過する点全体が作る体積をVとする。\\
(1)Vをa,b,cで表せ。\\
(2)a+b+c=1のとき、Vの取り得る値の範囲を求めよ。
\end{eqnarray}
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第2問(1)〜指数対数不等式の表す領域の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (1)次の連立不等式の表す領域の面積は\frac{\boxed{\ \ オ\ \ }\sqrt{\boxed{\ \ カ\ \ }}}{\boxed{\ \ キ\ \ }} である。\\
\left\{\begin{array}{1}
\displaystyle\log_4y+\log_{\frac{1}{4}}(x-2)+\log_4\frac{1}{8-x} \geqq -1\\
2^{y+x^2+11} \leqq 1024^{x-1}\\
\end{array}\right.
\end{eqnarray}
この動画を見る 

【高校数学】微分⑤~微分を用いた最大値・最小値~ 6-11【数学Ⅱ】

アイキャッチ画像
単元: #微分法と積分法#接線と増減表・最大値・最小値
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
y=- 2x³+3x²+12x(-2≦x≦4)の最大値と最小値を求めよ。
この動画を見る 
PAGE TOP