2023年京大の数学!最大値・最小値【京都大学】【数学 入試問題】 - 質問解決D.B.(データベース)

2023年京大の数学!最大値・最小値【京都大学】【数学 入試問題】

問題文全文(内容文):
次の関数$f(x)$の最大値と最小値を求めよ。

$f(x)=e^{-x^{2}}+\dfrac{1}{4}x^{2}+1+\dfrac{1}{e^{-x^{2}}+\dfrac{1}{4}x^{2}+1}$ $(-1≦x≦1)$

ただし、$e$は自然対数の底であり、その値は$e=2.71・・・$である。

2023京都大過去問
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
次の関数$f(x)$の最大値と最小値を求めよ。

$f(x)=e^{-x^{2}}+\dfrac{1}{4}x^{2}+1+\dfrac{1}{e^{-x^{2}}+\dfrac{1}{4}x^{2}+1}$ $(-1≦x≦1)$

ただし、$e$は自然対数の底であり、その値は$e=2.71・・・$である。

2023京都大過去問
投稿日:2023.03.07

<関連動画>

大学入試問題#917「さすがに落とせん」

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\sqrt{ 1+x+x^2 }$
$x=1$における微分係数を定義に従って求めよ

出典:1965年京都大学
この動画を見る 

微分方程式⑧-2【非同次2階微分方程式】(高専数学、数検1級)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
非同次2階微分方程式を解説していきます.
この動画を見る 

高専数学 微積II #1(1)(2) 1次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)$の$x=a$における一次近似式は
$f(a)+f`(a)(x-a)$
次の点における一次近似式を求めよ.

(1)$e^{2x}\cos x \ (x=0)$
(2)$\dfrac{1}{x} \ (x=1)$

この動画を見る 

18滋賀県教員採用試験(数学:4番 微分方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$f'(x)$:連続,$f(0)=1$
$g(x)=\displaystyle \int_{0}^{x}(x-t)f'(t)dt$
$f'(x)-1=g'(x)-g''(x)$
をみたす$f(x),g(x)$を求めよ.
この動画を見る 

高専数学 微積II #4 4次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$e^x$の$x=0$における4次近似式を用いて
$\sqrt{e}$
の近似値を小数第4位まで求めよ.
この動画を見る 
PAGE TOP