福田の数学〜一橋大学2023年文系第3問〜ベクトルと四面体の体積の最大 - 質問解決D.B.(データベース)

福田の数学〜一橋大学2023年文系第3問〜ベクトルと四面体の体積の最大

問題文全文(内容文):
$\Large\boxed{3}$ 原点をOとする座標空間内に3点A(-3, 2, 0), B(1, 5, 0), C(4, 5, 1)がある。
Pは|$\overrightarrow{PA}$+3$\overrightarrow{PB}$+2$\overrightarrow{PC}$|≦36 を満たす点である。
4点O, A, B, Pが同一平面上にないとき、四面体OABPの体積の最大値を求めよ。

2023一橋大学文系過去問
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 原点をOとする座標空間内に3点A(-3, 2, 0), B(1, 5, 0), C(4, 5, 1)がある。
Pは|$\overrightarrow{PA}$+3$\overrightarrow{PB}$+2$\overrightarrow{PC}$|≦36 を満たす点である。
4点O, A, B, Pが同一平面上にないとき、四面体OABPの体積の最大値を求めよ。

2023一橋大学文系過去問
投稿日:2023.05.28

<関連動画>

福田の数学〜北海道大学2024年理系第4問〜三角形の内心の位置ベクトル

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ 三角形OABが、|$\overrightarrow{OA}$|=3, |$\overrightarrow{AB}$|=5, $\overrightarrow{OA}・\overrightarrow{OB}$=10 を満たしているとする。
三角形OABの内接円の中心をIとし、この内接円と辺OAの接点をHとする。
(1)辺OBの長さを求めよ。
(2)$\overrightarrow{OI}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
(3)$\overrightarrow{HI}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
この動画を見る 

【数C】ベクトルの基本⑯点の存在範囲を考える

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
点の存在範囲を考える問題
この動画を見る 

福田の数学〜立教大学2022年経済学部第2問〜平面ベクトルの直交条件

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
tを正の実数とする。$OA=1,\ OB=t$である三角形OABにおいて、$\overrightarrow{ a }=\overrightarrow{ OA }$
$\overrightarrow{ b }=\overrightarrow{ OB },\angle AOB=θ$とする。ただし、$0 \lt θ \lt \frac{\pi}{2}$とする。また、辺OAの中点
をM、辺OBを1:2に内分する点をNとする。次の問いに答えよ。
(1)$\overrightarrow{ AN }$と$\overrightarrow{ BM }$を$\overrightarrow{ a }$と$\overrightarrow{ b }$を用いて表せ。
(2)内積$\overrightarrow{ AN }・\overrightarrow{ BM }$を$t$と$\cos θ$を用いて表せ。
(3)$\overrightarrow{ AN }∟\overrightarrow{ BM }$であるとき、$\cos θ$を$t$を用いて表せ。
(4)$\overrightarrow{ AN }∟\overrightarrow{ BM }$であるとき、$\cos θ$の最小値とそれを与えるtの値をそれぞれ求めよ。
(5)$\overrightarrow{ AN }∟\overrightarrow{ BM }$となるθが存在するtの値の範囲を求めよ。

2022立教大学経済学部過去問
この動画を見る 

【高校数学】 数B-53 空間における平面・直線の方程式①

アイキャッチ画像
単元: #数Ⅱ#平面上のベクトル#図形と方程式#点と直線#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$(x+5)^2+(y-1)^2+(z-2)^2=13$が$xy$平面と交わってできる
図形の方程式を求めよう.

②中心が$(1,a,2)$,半径が6の球面が$zx$平面と交わってできる円の半径が
$3\sqrt3$であるとき,$a$の値を求めよう.

③方程式$x^2+y^2+z^2-2x+4y+6z=2$はどのような図形を
表しているか答えよう.
この動画を見る 

【高校数学】 数B-8 ベクトルの成分①

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右図において、ベクトル$\overrightarrow{ a }$を成分を用いて$\overrightarrow{ a }=(a_1,a_2)$と表し、$|\vec{ a }|=$①____となる。

◎右図のベクトルを成分で表し、それぞれの大きさを求めよう。

②$\overrightarrow{ b }$

③$\overrightarrow{ c }$

④$\overrightarrow{ a }$

※図は動画内参照
この動画を見る 
PAGE TOP