【数Ⅱ】【図形と方程式】内分と外分の基本、点と直線 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【図形と方程式】内分と外分の基本、点と直線 ※問題文は概要欄

問題文全文(内容文):
2点$\rm A(-5),B(11)$に対して、線分$\rm AB$を$5:3$に内分する点を$\rm P$、$7:11$に外分する点を$\rm Q$とする。線分$\rm PQ$の中点の座標を求めよ。

次の3点が一直線上にあるとき、$t$の値を求めよ。
(1) $(-2,6),(0,3),(4,t)$
(2) $(1,4),(-1,t),(t,2)$
チャプター:

0:00 第一問
5:00 第二問

単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2点$\rm A(-5),B(11)$に対して、線分$\rm AB$を$5:3$に内分する点を$\rm P$、$7:11$に外分する点を$\rm Q$とする。線分$\rm PQ$の中点の座標を求めよ。

次の3点が一直線上にあるとき、$t$の値を求めよ。
(1) $(-2,6),(0,3),(4,t)$
(2) $(1,4),(-1,t),(t,2)$
投稿日:2025.03.07

<関連動画>

福田の数学〜東京大学2023年文系第2問〜定積分で表された関数と最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 座標平面上の放物線y=3$x^2$-4xをCとおき、直線y=2xをlとおく。実数tに対し、C上の点P(t, $3t^2-4t$)とlの距離をf(t)とする。
(1)-1≦a≦2の範囲の実数aに対し、定積分
g(a)=$\displaystyle\int_{-1}^af(t)dt$
を求めよ。
(2)aが0≦a≦2の範囲を動くとき、g(a)-f(a)の最大値および最小値を求めよ。

2023東京大学文系過去問
この動画を見る 

【数Ⅱ】【図形と方程式】2直線の関係2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$3x-2y+3=0,2x-4y+k=0,x-ky+5=0$が1点で交わるように、定数$k$の値を求めよ。

$x+3y=2,x+y=0,ax+2y=-4$が三角形を作らないような定数$a$の値を求めよ。

2直線$x-y+1=0,3x+2y-12=0$の交点を通り、次の条件を満たす直線の方程式を、それぞれ求めよ。
(1)直線$5xー6yー8=0$に平行である。
(2)直線$5xー6yー8=0$に垂直である。
この動画を見る 

福田のわかった数学〜高校2年生013〜直線の方程式

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 直線の方程式
3直線$\left\{
\begin{array}{1}
a_1x+b_1y=1\\
a_2x+b_2y=1\\
a_3x+b_3y=1
\end{array}
\right.$
 が1点で交わるとき、
3点$(a_1,b_1),(a_2,b_2),(a_3,b_3)$は一直線上にあることを示せ。
この動画を見る 

福田の数学〜慶應義塾大学看護医療学部2025第4問〜放物線と接線の囲む面積と内積の最小値

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$k$を実数の定数とし、

座標平面上に$2$点$A(1,-3),B(-1,k)$をとる。

また、放物線$y=x^2$を$C$とする。

以下に答えなさい。

(1)点$A$から曲線$C$に引いた$2$本の接線のうち、

傾きが正の接線を$\ell_1$とし、

傾きが負の接線を$\ell_2$とするとき、

直線$\ell_1$の方程式は$y=\boxed{テ}$であり、

直線$\ell_2$の方程式は$y=\boxed{ト}$である。

また、$2$直線$\ell_1,\ell_2$のなす角を$\theta$とすると、

$\tan\theta=\boxed{ナ}$である。

ただし、$0\lt\theta\lt\dfrac{\pi}{2}$とする。

さらに、曲線$C$と$2$直線$\ell_1,\ell_2$で囲まれた

図形の面積は$\boxed{ニ}$である。

(2)点$P$が曲線$C$全体を動くときの

$\overrightarrow{PA}・\overrightarrow{PB}$の最小値を$m$とする。

このとき、$m$を$k$を用いて表すと、

$k\geqq \boxed{ヌ}$のときは$m=\boxed{ネ}$であり、

$k\lt \boxed{ヌ}$のときは、$m=\boxed{ノ}$である。

$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る 

【数Ⅱ】【図形と方程式】2直線の関係1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形$\rm ABC$について次の三直線の方程式を求めよ。またそれらが1点で交わることを示し、その点の座標を求めよ。
(1) 各辺の垂直二等分線
(2) 各頂点から対辺に下した垂線

$x+ay+1=0, ax+(a+2)y+3=0$ が次の条件を満たすとき定数$a$の値をそれぞれ求めよ。
(1) 平行である
(2) 垂直である
この動画を見る 
PAGE TOP