【上手に文字を置ける?】多項式の割り算の入試問題【流通科学大学】【数学】 - 質問解決D.B.(データベース)

【上手に文字を置ける?】多項式の割り算の入試問題【流通科学大学】【数学】

問題文全文(内容文):
整式$f(x)=x^3+ax^2+bx+c$を$(x+1)^2$で割ると余りが$2x+7$であり、
$x-1$で割ると余りが$17$である。
このときの、$a,b,c$の値は?

流通科学大過去問
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
整式$f(x)=x^3+ax^2+bx+c$を$(x+1)^2$で割ると余りが$2x+7$であり、
$x-1$で割ると余りが$17$である。
このときの、$a,b,c$の値は?

流通科学大過去問
投稿日:2022.04.26

<関連動画>

福田の数学〜名古屋大学2023年文系第2問〜空間図形と体積の最小

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#式と証明#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 図のような1辺の長さが1の立方体ABCD-EFGHにおいて、辺AD上に点Pをとり、線分APの長さをpとする。このとき、線分AGと線分FPは四角形ADGF上で交わる。その交点をXとする。(※図は動画参照)
(1)線分AXの長さをpを用いて表せ。
(2)三角形APXの面積をpを用いて表せ。
(3)四面体ABPXと四面体EFGXの体積の和をVとする。
Vをpを用いて表せ。
(4)点Pを辺AD上で動かすとき、Vの最小値を求めよ。

2023名古屋大学文系過去問
この動画を見る 

【二項定理のキホン】二項定理の基礎を解説しました!〔数学 高校数学〕

アイキャッチ画像
単元: #数Ⅱ#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
二項定理の基礎について解説します。
この動画を見る 

神戸大(医)整式 有理数と無理数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a$は正の無理数 $X,Y$は有理数

$X=a^3+3a^2-14a+6$
$Y=a^2-2a$

(1)
$x^3+3x^2-14x+6$を$x^2-2x$で割った余りと商

(2)
$X,Y,a$の値


出典:神戸大学 過去問
この動画を見る 

福田の数学〜浜松医科大学2024医学部第1問〜等式と不等式の証明とタンジェントの加法定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#三角関数#恒等式・等式・不等式の証明#加法定理とその応用#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。
(1) $a$, $b$, $c$ を正の実数とする。このとき、不等式
$a^2b^2+b^2c^2+c^2a^2 \geqq abc(a+b+c)$
を証明せよ。また、等号が成り立つときの$a$, $b$, $c$ の条件を求めよ。
(2) 鋭角三角形の3つの内角を$A$, $B$, $C$とおく。以下の問いに答えよ。
(a)等式
$\tan A+\tan B+\tan C=\tan A\tan B\tan C$
を証明せよ。
(b)不等式
$\displaystyle \frac{1}{\tan A}+\displaystyle \frac{1}{\tan B}+\displaystyle \frac{1}{\tan C} \geqq\sqrt{ 3 }$
を証明せよ。また、等号が成り立つときの鋭角三角形の条件を求めよ。
この動画を見る 

福田の数学〜東北大学2023年理系第4問〜1の5乗根

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 実数a=$\frac{\sqrt5-1}{2}$に対して、整式f(x)=$x^2$-$ax$+1を考える。
(1)整式$x^4$+$x^3$+$x^2$+$x$+1 はf(x)で割り切れることを示せ。
(2)方程式f(x)=0の虚数解であって虚部が正のものを$\alpha$とする。$\alpha$を極形式で表せ。ただし、$r^5$=1を満たす実数rがr=1のみであることは、認めて使用してよい。
(3)設問(2)の虚数$\alpha$に対して、$\alpha^{2023}$+$\alpha^{-2023}$の値を求めよ。

2023東北大学理系過去問
この動画を見る 
PAGE TOP