一度はみんな間違える変域 国分寺高校 - 質問解決D.B.(データベース)

一度はみんな間違える変域 国分寺高校

問題文全文(内容文):
$y=ax^2$について$-4 \leqq x \leqq 2$のとき$b \leqq y \leqq 8$であった。
a=? b=?

国分寺高等学校
単元: #数学(中学生)#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$y=ax^2$について$-4 \leqq x \leqq 2$のとき$b \leqq y \leqq 8$であった。
a=? b=?

国分寺高等学校
投稿日:2022.09.14

<関連動画>

【数Ⅰ】【図形と計量】余弦定理を使った証明 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
△ABC において,次のことが成り立つことを正弦定理を利用して証明せよ。

b<c⇒B<C
この動画を見る 

福田のおもしろ数学269〜三角形における三角関数の性質の証明その2

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\triangle \mathrm{ABC}$ において、$ \cos A \cos B \cos C \leqq $$\displaystyle \frac{1}{8} \cdots ①$ が成り立つことを証明して下さい。
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第1問(3)〜四面体と四面体の共通部分の切り口の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(3)座標空間内の4点$(2,0,0),\ (-1,\sqrt3,0),\ (-1,-\sqrt3,0),\ (0,0,2)$を頂点と
する四面体をP、4点$(-2,0,1),\ (1,-\sqrt3,1),\ (1,\sqrt3,1),\ (0,0,-1)$を頂点
とする四面体をQとする。RをPとQの共通部分とする。Rを平面$z=\frac{1}{3}$で
切ったときの切り口の面積を求めよ。

2022早稲田大学教育学部過去問
この動画を見る 

【数Ⅰ】2次関数:平行移動

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次関数 $y = ax^2 + bx + c$ のグラフを、x軸 方向に3、y軸方向に-2だけ平行移動した 放物線は、点(5,13)を通り、頂点の座標が (2,-5)である。 このとき、定数a、b、cの値を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】x²+y²=1 のときx²ーy²+2xの最大値と最小値を求めよ。

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
x²+y²=1 のときx²ーy²+2xの最大値と最小値を求めよ。
この動画を見る 
PAGE TOP