千葉大 漸化式 高校数学 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

千葉大 漸化式 高校数学 Mathematics Japanese university entrance exam

問題文全文(内容文):
90千葉大学過去問題
$a_1=1$
$3(a_1+a_2+\cdots +a_n)=(n+2)a_n$
(1)一般項$a_n$を求めよ。
(2)$\displaystyle\sum_{k=1}^n \frac{1}{a_k}$
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
90千葉大学過去問題
$a_1=1$
$3(a_1+a_2+\cdots +a_n)=(n+2)a_n$
(1)一般項$a_n$を求めよ。
(2)$\displaystyle\sum_{k=1}^n \frac{1}{a_k}$
投稿日:2018.11.14

<関連動画>

福田の数学〜慶應義塾大学2023年理工学部第3問〜確率と漸化式(難問)Part2

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 何も入っていない2つの袋A,Bがある。いま、「硬貨を1枚投げて表が出たら袋A、裏が出たら袋Bを選び、以下のルールに従って選んだ袋の中に玉を入れる」
という操作を繰り返す。
ルール
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より多いか、2つの袋の中に入っている玉の数が同じとき、選んだ袋の中に玉を1個入れる。
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より少ないとき、選んだ袋の中に入っている玉の数が、もう一方の袋の中に入っている玉の数と同じになるまで選んだ袋の中に玉をいれる。

たとえば、上の操作を3回行ったとき、硬貨が順に表、表、裏と出たとすると、
A,B2つの袋の中の玉の数は次のように変化する。
A:0個 B:0個 → A:1個 B:0個 → A:2個 B:0個 → A:2個 B:2個
(1)4回目の操作を終えたとき、袋Aの中に3個以上の玉が入っている確率は$\boxed{\ \ カ\ \ }$である。また、4回目の操作を終えた時点で袋Aの中に3個以上の玉が入っているという条件の下で、7回目の操作を終えたとき袋Bの中に入っている玉の数が3個以下である条件付き確率は$\boxed{\ \ キ\ \ }$である。
(2)$n$回目の操作を終えたとき、袋Aの中に入っている玉の数のほうが、袋Bの中に入っている玉の数より多い確率を$p_n$とする。
$p_{n+1}$を$p_n$を用いて表すと$p_{n+1}$=$\boxed{\ \ ク\ \ }$となり、これより$p_n$を$n$を用いて表すと$p_n$=$\boxed{\ \ ケ\ \ }$となる。
(3)$n$回目($n$≧4)の操作を終えたとき、袋Aの中に$n-1$個以上の玉が入っている確率は$\boxed{\ \ コ\ \ }$であり、$n-2$個以上の玉が入っている確率は$\boxed{\ \ サ\ \ }$である。
この動画を見る 

【高校数学】数列の和と一般項~理解して覚えようね~ 3-10【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
数列の和と一般項の関係について解説しています。
この動画を見る 

神様の順列で瞬殺

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
52枚のトランプから1枚引いて見ないで伏せる.
残り51枚から3枚引いたら全部♡だった.
伏せた1枚が♡である確率を求めよ.
この動画を見る 

福田の一夜漬け数学〜数列・群数列(1)〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
群数列 $1\ | \ 3 5 \ |\ 7 9 11$$ \ |\ 13 15 17 19$$ \ | \ 21 \cdots$について次を求めよ。
(1)第$n$群の初項
(2)第$n$群の総和
(3)301は第何群の何番目か


正の奇数の列$\left\{a_n\right\}$を次のように第$k$群に$2^{k-1}$個の項を含むように分ける。
$1\ | \ 3 5 \ |\ 7 9 11 13 $$\ | \ 15 17 19 21 $$23 25 27 29 $$\ | \ 31 \cdots$
(1)第$n$群の初項を求めよ。
(2)777は第何群の何番目か。
この動画を見る 

香川大(医) 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#香川大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-4x+1=0$の2つの解を$\alpha,\beta(\alpha \gt \beta)$とする

(1)
$\alpha^n + \beta^n$は偶数であることを示せ($n$自然数)

(2)
$[ \alpha^n ]$は奇数であることを示せ
$[ \alpha^n ]$は$\alpha^n$をこえない最大の整数

出典:2018年香川大学 医学部 過去問
この動画を見る 
PAGE TOP