#奈良教育大学(2008) #定積分 #Shorts - 質問解決D.B.(データベース)

#奈良教育大学(2008) #定積分 #Shorts

問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x^2}{1+x^2} dx$

出典:2008年奈良教育大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#奈良教育大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x^2}{1+x^2} dx$

出典:2008年奈良教育大学
投稿日:2024.05.10

<関連動画>

大学入試問題#310 東京都市大学(2013) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京都市大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}}(\cos\ x)log(\sin\ x)dx$

出典:2013年東京都市大学 入試問題
この動画を見る 

福田の数学〜立教大学2021年経済学部第2問〜2項間の漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$次の条件によって定められる数列$\left\{a_n\right\}$がある。
$a_1=1, a_{n+1}=3a_n+4n (n=1,2,3,\ldots)$
また、$n$に無関係な定数$p,q$に対し、
$b_n=a_n+pn+q (n=1,2,3,\ldots)$
とおく。このとき次の問いに答えよ。
(1)$n,p,q$に無関係な定数$A,B,C,D,E$が
$b_{n+1}=Ab_n+(Bp+C)n+(Dp+Eq) (n=1,2,3,\ldots)$
を満たすとき、A,B,C,D,Eの値をそれぞれ求めよ。
(2)Aを(1)で求めた値とする。数列$\left\{b_n\right\}$が公比$A$の等比数列となるような
$p,q$の値をそれぞれ求めよ。
(3)(2)で求めた$p,q$の値に対して、数列$\left\{b_n\right\}$の一般項を求めよ。

2021立教大学経済学部過去問
この動画を見る 

福田の数学〜一橋大学2023年文系第5問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ A, B, Cの3人が、A, B, C, A, B, C, A, ... という順番にさいころを投げ、最初に1を出した人を勝ちとする。だれかが1を出すか、全員が$n$回ずつ投げたら、ゲームを終了する。A, B, Cが勝つ確率$P_A$, $P_B$, $P_C$をそれぞれ求めよ。

2023一橋大学文系過去問
この動画を見る 

立教大 2次方程式の解 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #2次方程式#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-2(a-1)x+(a-2)^2=0$の2つの解を$\alpha,\beta$
$0 \lt \alpha \lt 1 \lt \beta \lt 2$となる$a$の範囲は?

出典:立教大学 過去問
この動画を見る 

京都大 絶対値のついた二次関数の共有点 東大数学科院卒 杉山聡

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=|x^2-2|$と$y=|2x^2+ax-1|$の共有点の個数を求めよ

出典:京都大学 過去問
この動画を見る 
PAGE TOP