練習問題50 宮崎大学 相加・相乗平均 - 質問解決D.B.(データベース)

練習問題50 宮崎大学 相加・相乗平均

問題文全文(内容文):
$x \gt 0,\ y \gt 0$
$x+y=1$のとき
$(1+\displaystyle \frac{1}{x})(1+\displaystyle \frac{1}{y}) \geqq 9$を示せ

出典:宮崎大学
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x \gt 0,\ y \gt 0$
$x+y=1$のとき
$(1+\displaystyle \frac{1}{x})(1+\displaystyle \frac{1}{y}) \geqq 9$を示せ

出典:宮崎大学
投稿日:2021.08.28

<関連動画>

福田のおもしろ数学111〜論証力をチェックしよう〜3変数の基本対称式の性質

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明
指導講師: 福田次郎
問題文全文(内容文):
実数$a$,$b$,$c$が$a$+$b$+$c$>0, $ab$+$bc$+$ca$>0, $abc$>0 を満たすとき、$a$>0, $b$>0, $c$>0 であることを証明せよ。
この動画を見る 

整式の剰余2022

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^{2022}$を$ x^6-x^5+x^4-x^3+x^2-x+1$で割った余りを求めよ.
この動画を見る 

13神奈川県教員採用試験(数学:4番 整式の割り算)

アイキャッチ画像
単元: #数Ⅱ#式と証明#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
4⃣$x^{2016}+x^7+1$を$x^2+1$で割った余りを求めよ。
この動画を見る 

【数Ⅱ】相加平均・相乗平均の関係を正しく使いこなそう【よくある間違え方とは】

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ (1)x \gt 0のとき,x+\dfrac{9}{x}\geqq 6を示せ.
(2)x \gt 0のとき,x+\dfrac{9}{x}の最小値を求めよ.
(3)x \gt 0のとき,x+\dfrac{6}{x+1}の最小値を求めよ.
(4)x \gt 0のとき,\dfrac{x^2;5x+15}{x+2}の最小値を求めよ.
(5)a \gt 0,b \gt 0のとき\left(a+\frac{1}{b} \right)\left(\frac{16}{a}+b \right)の最小値
を求めよ.$

この動画を見る 

【高校数学】 数Ⅱ-18 等式の証明③

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x+y+z=3,xyz=3(xy+yz+zx)$のとき、x,y,zのうち少なくとも1つは 3に等しいことを証明しよう。

②$\displaystyle \frac{x+y}{z}=\displaystyle \frac{y+z}{x}=\displaystyle \frac{z+x}{y}$のとき、この式の値を求めよう。
この動画を見る 
PAGE TOP