練習問題50 宮崎大学 相加・相乗平均 - 質問解決D.B.(データベース)

練習問題50 宮崎大学 相加・相乗平均

問題文全文(内容文):
$x \gt 0,\ y \gt 0$
$x+y=1$のとき
$(1+\displaystyle \frac{1}{x})(1+\displaystyle \frac{1}{y}) \geqq 9$を示せ

出典:宮崎大学
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x \gt 0,\ y \gt 0$
$x+y=1$のとき
$(1+\displaystyle \frac{1}{x})(1+\displaystyle \frac{1}{y}) \geqq 9$を示せ

出典:宮崎大学
投稿日:2021.08.28

<関連動画>

式の値

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a+\dfrac{5}{\sqrt a}=26$
$a^2-27a+10$の値を求めよ.
この動画を見る 

【高校数学】  数Ⅱ-9  分数式の計算②

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎計算しよう。

①$\displaystyle \frac{x-5}{x-3}+\displaystyle \frac{2x-4}{x-3}$

②$\displaystyle \frac{x}{x+4}-\displaystyle \frac{2}{x-1}$

③$\displaystyle \frac{x+8}{x^2+x-2}+\displaystyle \frac{x-4}{x^2-x}$
この動画を見る 

【数Ⅱ】【式と証明】等式の証明1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a+b+c=0$のとき、
次の等式が成り立つことを証明せよ。
$a(\dfrac1b+\dfrac1c)+b(\dfrac1c+\dfrac1a)+c(\dfrac1a+\dfrac1b)=-3$
この動画を見る 

【数学II】二項定理

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学II】二項定理 解説動画です
この動画を見る 

福田の数学〜東京慈恵会医科大学2022年医学部第3問〜約数と倍数の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
mは3以上の奇数とし、mの全ての正の約数を$a_1,a_2,\ldots,a_k$と並べる。
ただし、$a_1 \lt a_2 \lt \ldots \lt a_k$とする。
以下の2つの条件$(\textrm{i}),(\textrm{ii})$を満たすmについて考える。
$(\textrm{i})m$は素数ではない。
$(\textrm{ii})i \leqq j,1 \lt i \lt k ,1 \lt j \lt k$を満たす全ての整数i,jについて$a_j-a_i \leqq 3$が
成り立つ。
このとき、次の問いに答えよ。
(1)kは3または4であることを示し、mを$a_2$を用いて表せ。
(2)$k=3$となるとき、全ての正の整数nについて$(a_2n+1)^{a_2}-1$は
mの倍数であることを示せ。

2022東京慈恵会医科大学医学部過去問
この動画を見る 
PAGE TOP