福田の数学〜上智大学2022年TEAP文系型第4問(1)〜必要十分条件と条件の否定 - 質問解決D.B.(データベース)

福田の数学〜上智大学2022年TEAP文系型第4問(1)〜必要十分条件と条件の否定

問題文全文(内容文):
(1)実数の数列${a_n}$に関する以下の条件 $(P)$ を考える。
$(P) 「n\geqq N$ならば $a_n \leqq 4$」が成り立つ自然数Nが存在する
$(\textrm{i})$ 以下の選択肢から、(P) であるための必要十分条件をすべて選べ。
$(\textrm{ii})$ 以下の選択肢から、(P) であるための必要条件ではあるが十分条件ではないもの
をすべて選べ。
$(\textrm{iii})$ 以下の選択肢から、(P) の否定であるものをすべて選べ。
選択肢$(\textrm{a})$「$n\gt N$ ならば$a_n \leqq 4$」が成り立つ自然数Nが存在する
$(\textrm{b})$ 「$n \lt N$ ならば$an \leqq 4$」 が成り立つ自然数Nが存在する
$(\textrm{c})$ 「$n\geqq N$ならば$a_n\gt 4$」 が成り立つ自然数Nが存在する
$(\textrm{d}) a_n \gt 4$ を満たす自然数n が無限個存在する
$(\textrm{e}) a_n \leqq 4$ を満たす自然数nが無限個存在する
$(\textrm{f}) a_n \gt 4$ を満たす自然数nは存在しても有限個である
$(\textrm{g}) a_n \leqq 4$ を満たす自然数nは存在しても有限個である

2022上智大学文系過去問
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)実数の数列${a_n}$に関する以下の条件 $(P)$ を考える。
$(P) 「n\geqq N$ならば $a_n \leqq 4$」が成り立つ自然数Nが存在する
$(\textrm{i})$ 以下の選択肢から、(P) であるための必要十分条件をすべて選べ。
$(\textrm{ii})$ 以下の選択肢から、(P) であるための必要条件ではあるが十分条件ではないもの
をすべて選べ。
$(\textrm{iii})$ 以下の選択肢から、(P) の否定であるものをすべて選べ。
選択肢$(\textrm{a})$「$n\gt N$ ならば$a_n \leqq 4$」が成り立つ自然数Nが存在する
$(\textrm{b})$ 「$n \lt N$ ならば$an \leqq 4$」 が成り立つ自然数Nが存在する
$(\textrm{c})$ 「$n\geqq N$ならば$a_n\gt 4$」 が成り立つ自然数Nが存在する
$(\textrm{d}) a_n \gt 4$ を満たす自然数n が無限個存在する
$(\textrm{e}) a_n \leqq 4$ を満たす自然数nが無限個存在する
$(\textrm{f}) a_n \gt 4$ を満たす自然数nは存在しても有限個である
$(\textrm{g}) a_n \leqq 4$ を満たす自然数nは存在しても有限個である

2022上智大学文系過去問
投稿日:2022.10.06

<関連動画>

【数Ⅰ】中高一貫校用問題集(論理・確率編)集合と命題:命題と証明:逆裏対偶の真偽の見分け方

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
命題$[xy>0 ⇒ x>0 かつy>0]$の逆、裏、対偶を述べ、さらにそれぞれの真偽を考えよ
この動画を見る 

福田のわかった数学〜高校1年生014〜絶対不等式(2)

アイキャッチ画像
単元: #数Ⅰ#数と式#2次関数#一次不等式(不等式・絶対値のある方程式・不等式)#2次方程式と2次不等式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 絶対不等式(2)
ある実数$x$に対して
$ax^2 + 4x + a \gt 0$
が成り立つような$a$の値の範囲は?
この動画を見る 

【数学Ⅰ/高1の予習】展開の公式を利用する因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を因数分解せよ。
(1)$x^3+27$
(2)$16x^3-2y^3$
(3)$x^3-9x^2+27x-27$
この動画を見る 

福田の数学〜よくある図形問題ですが微分で困ったことに〜明治大学2023年理工学部第3問〜三角比と最大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
[ 3 ]長さ 2 の線分 AB を直径とする円 O の周上に、点 P を$cos\angle PBA=\dfrac{\sqrt{3}}{3}$となるようにとる。このとき、 BP =$\fbox{か}$である。線分 AB 上に A, B とは異なる点 Q をとり、$x= AQ ( 0 くxく 2 )$とする。 PQ をxの式で表すと PQ =$\fbox{き}$となる。また、三角形 BPQ の面積 s をxの式で表すと s =$\fbox{く}$である。直線 PQ と円 O の交点のうち、 P でないものを R とする。三角形 AQR の面積Tをxの式で表すとT=$\fbox{け}$である。また、$0 くxく2$の範囲でxを動かすとき、Tが最大になるのは$x=\fbox{こ}$のときだけである。

2023明治大学理工学部過去問
この動画を見る 

福田のわかった数学〜高校3年生理系083〜グラフを描こう(5)ルート混じりのグラフ

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$グラフを描こう(5)
$y=x^3\sqrt{1-x^2}$ のグラフを描け。ただし凹凸は調べなくてよい。
この動画を見る 
PAGE TOP