福田の数学〜上智大学2022年TEAP文系型第4問(1)〜必要十分条件と条件の否定 - 質問解決D.B.(データベース)

福田の数学〜上智大学2022年TEAP文系型第4問(1)〜必要十分条件と条件の否定

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ (1)\ 実数の数列{a_n}に関する以下の条件 (P) を考える。\hspace{120pt}\\
(P) 「n\geqq Nならば a_n \leqq 4」が成り立つ自然数Nが存在する\hspace{70pt}\\
(\textrm{i}) 以下の選択肢から、(P) であるための必要十分条件をすべて選べ。\hspace{50pt}\\
(\textrm{ii}) 以下の選択肢から、(P) であるための必要条件ではあるが十分条件ではないもの\\
をすべて選べ。\hspace{240pt}\\
(\textrm{iii}) 以下の選択肢から、(P) の否定であるものをすべて選べ。\hspace{80pt}\\
選択肢(\textrm{a})「n\gt N ならばa_n \leqq 4」が成り立つ自然数Nが存在する\hspace{60pt}\\
(\textrm{b}) 「n \lt N ならばan \leqq 4」 が成り立つ自然数Nが存在する\hspace{57pt}\\
(\textrm{c}) 「n\geqq Nならばa_n\gt 4」 が成り立つ自然数Nが存在する\hspace{60pt}\\
(\textrm{d}) a_n \gt 4 を満たす自然数n が無限個存在する\hspace{115pt}\\
(\textrm{e}) a_n \leqq 4 を満たす自然数nが無限個存在する\hspace{116pt}\\
(\textrm{f}) a_n \gt 4 を満たす自然数nは存在しても有限個である\hspace{85pt}\\
(\textrm{g}) a_n \leqq 4 を満たす自然数nは存在しても有限個である\hspace{85pt}\\
\end{eqnarray}

2022上智大学文系過去問
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ (1)\ 実数の数列{a_n}に関する以下の条件 (P) を考える。\hspace{120pt}\\
(P) 「n\geqq Nならば a_n \leqq 4」が成り立つ自然数Nが存在する\hspace{70pt}\\
(\textrm{i}) 以下の選択肢から、(P) であるための必要十分条件をすべて選べ。\hspace{50pt}\\
(\textrm{ii}) 以下の選択肢から、(P) であるための必要条件ではあるが十分条件ではないもの\\
をすべて選べ。\hspace{240pt}\\
(\textrm{iii}) 以下の選択肢から、(P) の否定であるものをすべて選べ。\hspace{80pt}\\
選択肢(\textrm{a})「n\gt N ならばa_n \leqq 4」が成り立つ自然数Nが存在する\hspace{60pt}\\
(\textrm{b}) 「n \lt N ならばan \leqq 4」 が成り立つ自然数Nが存在する\hspace{57pt}\\
(\textrm{c}) 「n\geqq Nならばa_n\gt 4」 が成り立つ自然数Nが存在する\hspace{60pt}\\
(\textrm{d}) a_n \gt 4 を満たす自然数n が無限個存在する\hspace{115pt}\\
(\textrm{e}) a_n \leqq 4 を満たす自然数nが無限個存在する\hspace{116pt}\\
(\textrm{f}) a_n \gt 4 を満たす自然数nは存在しても有限個である\hspace{85pt}\\
(\textrm{g}) a_n \leqq 4 を満たす自然数nは存在しても有限個である\hspace{85pt}\\
\end{eqnarray}

2022上智大学文系過去問
投稿日:2022.10.06

<関連動画>

福田の数学〜早稲田大学2023年人間科学部第4問〜絶対値の付いた2次関数とx分のyの最大値

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $a$を1以上の定数とする。点P($x$,$y$)は曲線$y$=$|x^2-5x+4|$上を動く点で、$x$座標は1≦$x$≦$a$を満たすものとする。このとき$\displaystyle\frac{y}{x}$の最大値が、定数$a$の値によらないような$a$の値の範囲は、
$\boxed{\ \ シ\ \ }$≦$a$≦$\boxed{\ \ ス\ \ }$+$\sqrt{\boxed{\ \ セ\ \ }}$
である。この範囲の$a$の値における$\displaystyle\frac{y}{x}$の最大値は$\boxed{\ \ ソ\ \ }$である。
この動画を見る 

【短時間でマスター!!】内接円や外接円と三角形に関する面積の求め方を解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
内接円や外接円と三角形に関する面積の求め方を解説します。
この動画を見る 

福田の数学〜名古屋大学2024年文系第2問〜放物線と直線の関係

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $t$を0でない実数として、$x$の関数$y$=$-x^2$+$tx$+$t$ のグラフを$C$とする。
(1)$C$上において$y$座標が最大となる点Pの座標を求めよ。
(2)Pと点O(0,0)を通る直線を$l$とする。$l$と$C$がP以外の共有点Qを持つために$t$が満たすべき条件を求めよ。また、そのとき、点Qの座標を求めよ。
(3)$t$は(2)の条件を満たすとする。A(-1,-2)として、$X$=$\displaystyle\frac{1}{4}t^2$+$t$ とおくとき、AP$^2$-AQ$^2$を$X$で表せ。また、AP<AQとなるために$t$が満たすべき条件を求めよ。
この動画を見る 

すっきり、あっさり

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ z=1+\sqrt[5]{2}+\sqrt[5]{4}+\sqrt[5]{8}+\sqrt[5]{16}$である.
$ \left(1+\dfrac{1}{z}\right)^{50}$の値を求めよ.
この動画を見る 

式の値 数I

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a>0$ , $a^2+\frac{1}{a^2}=3$のとき
$a^3+ \frac{1}{a^3} = ?$

神奈川大学
この動画を見る 
PAGE TOP