問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ (1)\ 実数の数列{a_n}に関する以下の条件 (P) を考える。\hspace{120pt}\\
(P) 「n\geqq Nならば a_n \leqq 4」が成り立つ自然数Nが存在する\hspace{70pt}\\
(\textrm{i}) 以下の選択肢から、(P) であるための必要十分条件をすべて選べ。\hspace{50pt}\\
(\textrm{ii}) 以下の選択肢から、(P) であるための必要条件ではあるが十分条件ではないもの\\
をすべて選べ。\hspace{240pt}\\
(\textrm{iii}) 以下の選択肢から、(P) の否定であるものをすべて選べ。\hspace{80pt}\\
選択肢(\textrm{a})「n\gt N ならばa_n \leqq 4」が成り立つ自然数Nが存在する\hspace{60pt}\\
(\textrm{b}) 「n \lt N ならばan \leqq 4」 が成り立つ自然数Nが存在する\hspace{57pt}\\
(\textrm{c}) 「n\geqq Nならばa_n\gt 4」 が成り立つ自然数Nが存在する\hspace{60pt}\\
(\textrm{d}) a_n \gt 4 を満たす自然数n が無限個存在する\hspace{115pt}\\
(\textrm{e}) a_n \leqq 4 を満たす自然数nが無限個存在する\hspace{116pt}\\
(\textrm{f}) a_n \gt 4 を満たす自然数nは存在しても有限個である\hspace{85pt}\\
(\textrm{g}) a_n \leqq 4 を満たす自然数nは存在しても有限個である\hspace{85pt}\\
\end{eqnarray}
2022上智大学文系過去問
\begin{eqnarray}
{\large\boxed{4}}\ (1)\ 実数の数列{a_n}に関する以下の条件 (P) を考える。\hspace{120pt}\\
(P) 「n\geqq Nならば a_n \leqq 4」が成り立つ自然数Nが存在する\hspace{70pt}\\
(\textrm{i}) 以下の選択肢から、(P) であるための必要十分条件をすべて選べ。\hspace{50pt}\\
(\textrm{ii}) 以下の選択肢から、(P) であるための必要条件ではあるが十分条件ではないもの\\
をすべて選べ。\hspace{240pt}\\
(\textrm{iii}) 以下の選択肢から、(P) の否定であるものをすべて選べ。\hspace{80pt}\\
選択肢(\textrm{a})「n\gt N ならばa_n \leqq 4」が成り立つ自然数Nが存在する\hspace{60pt}\\
(\textrm{b}) 「n \lt N ならばan \leqq 4」 が成り立つ自然数Nが存在する\hspace{57pt}\\
(\textrm{c}) 「n\geqq Nならばa_n\gt 4」 が成り立つ自然数Nが存在する\hspace{60pt}\\
(\textrm{d}) a_n \gt 4 を満たす自然数n が無限個存在する\hspace{115pt}\\
(\textrm{e}) a_n \leqq 4 を満たす自然数nが無限個存在する\hspace{116pt}\\
(\textrm{f}) a_n \gt 4 を満たす自然数nは存在しても有限個である\hspace{85pt}\\
(\textrm{g}) a_n \leqq 4 を満たす自然数nは存在しても有限個である\hspace{85pt}\\
\end{eqnarray}
2022上智大学文系過去問
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ (1)\ 実数の数列{a_n}に関する以下の条件 (P) を考える。\hspace{120pt}\\
(P) 「n\geqq Nならば a_n \leqq 4」が成り立つ自然数Nが存在する\hspace{70pt}\\
(\textrm{i}) 以下の選択肢から、(P) であるための必要十分条件をすべて選べ。\hspace{50pt}\\
(\textrm{ii}) 以下の選択肢から、(P) であるための必要条件ではあるが十分条件ではないもの\\
をすべて選べ。\hspace{240pt}\\
(\textrm{iii}) 以下の選択肢から、(P) の否定であるものをすべて選べ。\hspace{80pt}\\
選択肢(\textrm{a})「n\gt N ならばa_n \leqq 4」が成り立つ自然数Nが存在する\hspace{60pt}\\
(\textrm{b}) 「n \lt N ならばan \leqq 4」 が成り立つ自然数Nが存在する\hspace{57pt}\\
(\textrm{c}) 「n\geqq Nならばa_n\gt 4」 が成り立つ自然数Nが存在する\hspace{60pt}\\
(\textrm{d}) a_n \gt 4 を満たす自然数n が無限個存在する\hspace{115pt}\\
(\textrm{e}) a_n \leqq 4 を満たす自然数nが無限個存在する\hspace{116pt}\\
(\textrm{f}) a_n \gt 4 を満たす自然数nは存在しても有限個である\hspace{85pt}\\
(\textrm{g}) a_n \leqq 4 を満たす自然数nは存在しても有限個である\hspace{85pt}\\
\end{eqnarray}
2022上智大学文系過去問
\begin{eqnarray}
{\large\boxed{4}}\ (1)\ 実数の数列{a_n}に関する以下の条件 (P) を考える。\hspace{120pt}\\
(P) 「n\geqq Nならば a_n \leqq 4」が成り立つ自然数Nが存在する\hspace{70pt}\\
(\textrm{i}) 以下の選択肢から、(P) であるための必要十分条件をすべて選べ。\hspace{50pt}\\
(\textrm{ii}) 以下の選択肢から、(P) であるための必要条件ではあるが十分条件ではないもの\\
をすべて選べ。\hspace{240pt}\\
(\textrm{iii}) 以下の選択肢から、(P) の否定であるものをすべて選べ。\hspace{80pt}\\
選択肢(\textrm{a})「n\gt N ならばa_n \leqq 4」が成り立つ自然数Nが存在する\hspace{60pt}\\
(\textrm{b}) 「n \lt N ならばan \leqq 4」 が成り立つ自然数Nが存在する\hspace{57pt}\\
(\textrm{c}) 「n\geqq Nならばa_n\gt 4」 が成り立つ自然数Nが存在する\hspace{60pt}\\
(\textrm{d}) a_n \gt 4 を満たす自然数n が無限個存在する\hspace{115pt}\\
(\textrm{e}) a_n \leqq 4 を満たす自然数nが無限個存在する\hspace{116pt}\\
(\textrm{f}) a_n \gt 4 を満たす自然数nは存在しても有限個である\hspace{85pt}\\
(\textrm{g}) a_n \leqq 4 を満たす自然数nは存在しても有限個である\hspace{85pt}\\
\end{eqnarray}
2022上智大学文系過去問
投稿日:2022.10.06