合同式でさらっと 良問再投稿 弘前大 整数問題 - 質問解決D.B.(データベース)

合同式でさらっと 良問再投稿 弘前大 整数問題

問題文全文(内容文):
(1)
$5^{2n-1}+7^{2n-1}+23^{2n-1}$
35の倍数を示せ

(2)
$3^{3n-2}+5^{3n-1}$
7の倍数であることを示せ

出典:弘前大学 過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$5^{2n-1}+7^{2n-1}+23^{2n-1}$
35の倍数を示せ

(2)
$3^{3n-2}+5^{3n-1}$
7の倍数であることを示せ

出典:弘前大学 過去問
投稿日:2019.08.25

<関連動画>

千葉大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
Pは奇数の素数である.
$N=(P+1)(P+3)(P+5)$

(1)Nは48の倍数であることを示せ.
(2)Nが144の倍数となるPを小さい順に5つ答えよ.

千葉大過去問
この動画を見る 

福田のわかった数学〜高校1年生036〜部屋割り論法

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 部屋割り論法(1)\\
100個の自然数がある。この中にその差が99で割り切れるような\\
2個の自然数が存在することを示せ。
\end{eqnarray}
この動画を見る 

岡山県立大 整数問題 合同式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#岡山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$自然数

(1)
$n(n^2+5)$は6の倍数であることを示せ

(2)
$3^{6n}$を7で割ると余りが1であることを示せ

出典:2008年岡山県立大学 過去問
この動画を見る 

素数判定

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$30^{17}+17^{30}$は素数か.
この動画を見る 

階乗に関する問題!! 24で割った余り

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
1!+2!+3!+・・・+2022!
24で割った余りは?
この動画を見る 
PAGE TOP