微分法と積分法 数Ⅱ定積分:1/6公式の使い方【烈's study!がていねいに解説】 - 質問解決D.B.(データベース)

微分法と積分法 数Ⅱ定積分:1/6公式の使い方【烈's study!がていねいに解説】

問題文全文(内容文):
$\displaystyle \int_{α}^{ β } (x-α)(x-β)dx=-\dfrac{1}{6}(β-α)^3$を用いて、次の定積分を求めよ。

(1)$\displaystyle \int_{-1}^{ 2 } (x^2-x-2)dx$

(2)$\displaystyle \int_{1-\sqrt{2} }^{1+\sqrt{2}} (x^2-2x-1)dx$

(3)$\displaystyle \int_{3}^{ 4 } (14x-24-2x^2)dx$
チャプター:

0:00 オープニング
0:05 問題文
0:11 1/6公式について
3:02 (1)解説
3:47 (2)解説
5:14 (3)解説
6:17 エンディング

単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \int_{α}^{ β } (x-α)(x-β)dx=-\dfrac{1}{6}(β-α)^3$を用いて、次の定積分を求めよ。

(1)$\displaystyle \int_{-1}^{ 2 } (x^2-x-2)dx$

(2)$\displaystyle \int_{1-\sqrt{2} }^{1+\sqrt{2}} (x^2-2x-1)dx$

(3)$\displaystyle \int_{3}^{ 4 } (14x-24-2x^2)dx$
投稿日:2024.08.05

<関連動画>

福田の数学〜浜松医科大学2023年医学部第2問〜定積分と極限とグラフ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
医療で使われる技術の1つとして、磁気共鳴画像法 (MRI) がある。
MRI は画像の濃淡を表す関数、例えば

$M(x)=\displaystyle \lim_{ n \to \infty } I_n(x) $ (xは実数)

を用いて体内の様子を可視化する技術である。 ここで $I_n(x) $ は

$I_n(x) = \displaystyle \int_0^n e^{ -t }cos(tx)dt $
(n=1, 2, 3, ...)である。以下の問いに答えよ。

(1) 定積分$I_n(x) $を求めよ。

(2) $M(x)=\displaystyle \lim_{ n \to \infty } I_n(x) $ を求めよ

2023浜松医科大学医過去問


(3) 関数 $y= M(x)$ について、増減、極値、グラフの凹凸および変曲点を調べて、そのグラフをかけ。
この動画を見る 

【高校数学】数Ⅱ:微分法と積分法:定積分の計算(同じ積分範囲)【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の定積分を求めよ。
$\displaystyle \int_{-2}^{3}(2x^2+4x-3)dx-2 \int_{-2}^{3}(x^2+4x+3)dx$
この動画を見る 

#高知工科大学2024#不定積分_23#元高校教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int x \sin\displaystyle \frac{x}{2} dx$

出典:2024年高知工科大学
この動画を見る 

工夫が大事!積分と確率の融合問題【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
サイコロを3回投げて出た目を順に$a,b,c$とするとき,

$ \displaystyle \int_{a-3}^{a+3} (x-b)(x-c)dx=0 $

となる確率を求めよ。

一橋大過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第5問〜定積分で表された関数の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{5}}\ 関数f(x)をf(x)=(x+1)(|x-1|-1)+2で定める。\\
(1)y=f(x)のグラフをかきなさい。\\
(2)kを実数とする。このとき、方程式f(x)=kが異なる3つの実数解\\
をもつようなkの値の範囲は\boxed{\ \ ア\ \ }である。\\
(3)曲線y=f(x)上の点P(0,f(0))における接線lの方程式はy=\boxed{\ \ イ\ \ }である。\\
また、曲線y=f(x)と直線lは2つの共有点をもつが、点Pとは異なる共有点を\\
Qとするとき、点Qのx座標は\boxed{\ \ ウ\ \ }である。さらに、曲線y=f(x)と直線lで\\
囲まれた図形の面積は\boxed{\ \ エ\ \ }である。\\
(4)関数F(x)をF(x)=\int_0^xf(t)dtで定める。このとき、F'(x)=0を満たすxを\\
すべて求めるとx=\boxed{\ \ オ\ \ }である。これより、関数F(x)は\\
x=\boxed{\ \ カ\ \ }で最小値\ \boxed{\ \ キ\ \ }\ をとることがわかる。\\
\end{eqnarray}

2022慶應義塾大学看護医療学科過去問
この動画を見る 
PAGE TOP