#52 数検1級1次試験 過去問 #微分方程式 - 質問解決D.B.(データベース)

#52 数検1級1次試験 過去問 #微分方程式

問題文全文(内容文):
$x\displaystyle \frac{dy}{dx}+y=(log\ x)^2$
$y(1)=1$をみたす解を$y=y(x)$で表せ
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x\displaystyle \frac{dy}{dx}+y=(log\ x)^2$
$y(1)=1$をみたす解を$y=y(x)$で表せ
投稿日:2022.06.17

<関連動画>

【高校数学】毎日積分26日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^{\frac{log3}{2}}\frac{e^x+1}{e^{2x}+1}dx$
これを解け.
この動画を見る 

大学入試問題#415「解法は何通りかありそう・・・」 兵庫県立大学2022 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (\displaystyle \frac{\sin3x}{\sin2x})^2 dx$

出典:2022年兵庫県立大学 入試問題
この動画を見る 

福田の数学〜神戸大学2024年理系第5問〜定積分で表された関数と不等式

アイキャッチ画像
単元: #積分とその応用#定積分#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 0以上の実数$x$に対して、
$f(x)$=$\displaystyle\frac{1}{2}\int_{-x}^x\frac{1}{1+u^2}du$
と定める。以下の問いに答えよ。
(1)0≦$\alpha$<$\displaystyle\frac{\pi}{2}$ を満たす実数$\alpha$に対して、$f(\tan\alpha)$を求めよ。
(2)$xy$平面上で、次の連立不等式の表す領域を図示せよ。
0≦$x$≦1, 0≦$y$≦1, $f(x)$+$f(y)$≦$f(1)$
またその領域の面積を求めよ。
この動画を見る 

ハルハルさんの積分問題「難易度やばめ:構想力が問われる問題【マニア向け】」

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$I=\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \displaystyle \frac{\cos\ x-2\sin\ x+3}{\sin\ x-2\cos\ x+3} dx$
この動画を見る 

大学入試問題#63 京都大学(2011) 気合で置換積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{1}{2}}(x+1)\sqrt{ 1-2x^2 }\ dx$を計算せよ。

出典:2011年京都大学 入試問題
この動画を見る 
PAGE TOP