2023年京大の漸化式!典型的なパターンが詰まった問題です【京都大学】【数学 入試問題】 - 質問解決D.B.(データベース)

2023年京大の漸化式!典型的なパターンが詰まった問題です【京都大学】【数学 入試問題】

問題文全文(内容文):
{${ a_n}$}は次の条件を満たしている。

${ a_1}=3$、${ a_n}=\displaystyle \frac{{ S_n}}{n}+(n-1)・2^{n}(n=2,3,4…)$

ただし,${ S_n}={ a_1}+{ a_2}+・・・+{ a_n}$である。このとき、数列{${ a_n}$}の一般項を求めよ。

京都大過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
{${ a_n}$}は次の条件を満たしている。

${ a_1}=3$、${ a_n}=\displaystyle \frac{{ S_n}}{n}+(n-1)・2^{n}(n=2,3,4…)$

ただし,${ S_n}={ a_1}+{ a_2}+・・・+{ a_n}$である。このとき、数列{${ a_n}$}の一般項を求めよ。

京都大過去問
投稿日:2023.04.07

<関連動画>

福田の数学〜京都大学2023年文系第4問〜部分和を含んだ漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 数列{$a_n$}は次の条件を満たしている。
$a_1$=3, $a_n$=$\frac{S_n}{n}$+$(n-1)・2^n$ (n=2,3,4,...)
ただし、$S_n$=$a_1$+$a_2$+...+$a_n$である。このとき、数列{$a_n$}の一般項を求めよ。

2023京都大学文系過去問
この動画を見る 

07神奈川県教員採用試験(数学:7番 数列の極限)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
7⃣$a_1=\frac{1}{3}$ , $3^{n+1}a_{n+1}=3^na_n+1$
$\displaystyle \lim_{ n \to \infty } S_n$を求めよ
この動画を見る 

福田のおもしろ数学351〜漸化式で定まる数列の第2025項の取り得る値の個数

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$a_1 = 1, a_{n+1} + a_n = ( a_{n+1} - a_n )^2$ で定まる、すべての項が正の数列 $\{ a_n \}$ に対し $a_2025$ の取りうる値は何個あるか。
この動画を見る 

3手1組の好手順 By ハルハルさん #数列

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$a_1=0$
$a_{n+1}=(a_n+2)(a_n+6)$を満たす一般項$a_n$を求めよ。
この動画を見る 

【高校数学】数列の和と一般項~理解して覚えようね~ 3-10【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
数列の和と一般項の関係について解説しています。
この動画を見る 
PAGE TOP