茨城大 3次関数と接線 積分 1/12公式導出 - 質問解決D.B.(データベース)

茨城大 3次関数と接線 積分 1/12公式導出

問題文全文(内容文):
$f(x)=x^3-4x$と$(a,f(a))$における接線とで囲まれた面積$(a \neq 0)$

出典:1994年茨城大学 過去問
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#接線と法線・平均値の定理#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#茨城大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-4x$と$(a,f(a))$における接線とで囲まれた面積$(a \neq 0)$

出典:1994年茨城大学 過去問
投稿日:2019.10.07

<関連動画>

名古屋大 微分 複雑な方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$f(x)=x^{-2}2^x$ $(x \neq 0)$
$f'(x) \gt 0$となる条件を求めよ

(2)
$2^x=x^2$実数解の個数を求めよ

(3)
$2^x=x^2$の有理数解をすべて求めよ

出典:2015年名古屋大学 過去問
この動画を見る 

【割り算の微分】商の微分の導出について解説しました!【数学III】

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
商の微分の導出について解説します。
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第4問〜楕円と弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$Oを原点とする座標平面において、楕円$D:\frac{x^2}{6}+\frac{y^2}{2}=1$ 上に異なる2点$P_1,P_2$
がある。$P_1$における接線$l_1$と$P_2$における接線$l_2$の交点を$Q(a,\ b)$とし、線分$P_1P_2$の
中点をRとする。

(1)$P_1$の座標を$(x_1,\ y_1)$とするとき、$l_1$の方程式は$x_1x+\boxed{\ \ チ\ \ }\ y_1y+\boxed{\ \ ツ\ \ }=0$
と表される。

(2)直線$P_1P_2$の方程式は、a,bを用いて$ax+\boxed{\ \ テ\ \ }\ by+\boxed{\ \ ト\ \ }=0$と表される。

(3)3点O,R,Qは一直線上にあって$\overrightarrow{ OR }=\frac{\boxed{\ \ ナ\ \ }}{a^2+\boxed{\ \ ニ\ \ }\ b^2}\overrightarrow{ OQ }$が成り立つ。

(4)$l_1$と$l_2$のどちらもy軸と平行ではないとする。このとき、$l_1$と$l_2$の傾きは
tの方程式$(a^2+\boxed{\ \ ヌ\ \ })t^2+\boxed{\ \ ネ\ \ }abt+(b^2+\boxed{\ \ ノ\ \ })=0$ の解である。

(5)$l_1$と$l_2$が直交しながら$P_1,P_2$が動くとする。
$(\textrm{i})Q$の軌跡の方程式を求めよ。   $(\textrm{ii})R$のy座標の最大値を求めよ。
$(\textrm{iii})R$の軌跡の概形を描け。

2021上智大学理系過去問
この動画を見る 

【数Ⅲ】微分法の応用:接線と法線 曲線 y=√x²+1 に点(1,0)から引いた接線と法線の方程式を求めよう。

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線 $y=\sqrt{x²+1}$ に点($1,0$)から引いた接線と法線の方程式を求めよう。
この動画を見る 

【数Ⅲ】微分法の応用:接線と法線 関数 x²/2 + y²/8 =1 上の点P(1,2)における接線の方程式を求めよう。

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線$\dfrac{x^2}{2}+\dfrac{y^2}{8}=1$上の点P(1,2)における接線の方程式を求めよう。
この動画を見る 
PAGE TOP