【数Ⅲ】【微分とその応用】微分計算の基本1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【微分とその応用】微分計算の基本1 ※問題文は概要欄

問題文全文(内容文):
微分しなさい
$y=(x+2)(x-1)(x-5)$
$y=(x^3-x)(x^2+1)(x-1)$
$ y= \dfrac{x}{(1+x^3)^2}$
$y= \dfrac{1}{x\sqrt[ 4 ]{ x }}$
$y=x \sqrt{x^2+2}$
$y= \dfrac{x}{\sqrt{1-x^2}}$
$f(x) = \dfrac{1}{x^3+1}$の逆関数$f^{-1}(x)$ の $x=\dfrac{1}{9}$における微分係数を求めよ。
チャプター:

0:00 秋山先生の自己紹介
0:07 積の微分
7:22 商の微分(公式は使わない)
16:29 逆関数の微分係数を求める

単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
微分しなさい
$y=(x+2)(x-1)(x-5)$
$y=(x^3-x)(x^2+1)(x-1)$
$ y= \dfrac{x}{(1+x^3)^2}$
$y= \dfrac{1}{x\sqrt[ 4 ]{ x }}$
$y=x \sqrt{x^2+2}$
$y= \dfrac{x}{\sqrt{1-x^2}}$
$f(x) = \dfrac{1}{x^3+1}$の逆関数$f^{-1}(x)$ の $x=\dfrac{1}{9}$における微分係数を求めよ。
投稿日:2024.12.12

<関連動画>

大小比較!この形は超頻出なので絶対に抑えておきたい問題【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$e^\pi$と$\pi^e$の大小を比較せよ。
一橋大過去問
この動画を見る 

16奈良県教員採用試験(数学:高校5番 y軸回転体)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
5⃣ $l:y=x \sqrt{1-x^2}$ $(0 \leqq x \leqq 1)$
(1)極値、グラフ
(2)l、x軸で囲まれた図形をy軸を中心にした回転体の体積V
この動画を見る 

福田の数学〜北里大学2021年医学部第3問〜関数の増減とはさみうちの原理による数列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#数列の極限#微分法#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 関数$f(x)=x^5-2x^3+9x$について考える。実数$t$に対して$y=f(x)$上の点($t, f(t)$)における接線と$x$軸の交点の$x$座標を$g(t)$とおく。
また、正の実数$t$に対して$h(t)=\displaystyle\frac{g(t)}{t}$とおく。次の問いに答えよ。
(1)$g(t)$を求めよ。
(2)$h'(t)=0$を満たす正の実数$t$を求めよ。
(3)実数$p$は、すべての正の実数$t$に対して|$h(t)$|$\leqq p$を満たすとする。
このような$p$の最小値を求めよ。
(4)$a$を定数とする。$a_1=a, a_{n+1}=g(a_n)$ $(n=1,2,3...)$で定められる数列
$\left\{a_n\right\}$に対して、$\displaystyle\lim_{n \to \infty}a_n=0$となることを示せ。

2021北里大学医学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題033〜浜松医科大学2016年度理系第3問〜指数方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。なお、必要があれば以下の極限値の公式を用いてもよい。
$\lim_{x \to \infty}\frac{x}{e^x}=0$
(1)方程式$2^x=x^2 (x \gt 0)$の実数解の個数を求めよ。
(2)aを正の実数とし、xについての方程式$a^x=x^a (x \gt 0)$を考える。
$(\textrm{a})$方程式$a^x=x^a (x \gt 0)$の実数解の個数を求めよ。
$(\textrm{b})$方程式$a^x=x^a (x \gt 0)$でa,xがともに正の整数となるa,xの組$(a,x)$
をすべて求めよ。ただし$a \ne x$とする。

2016浜松医科大学理系過去問
この動画を見る 

滋賀大 微分公式導出問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#滋賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
滋賀大学過去問題
自然数nに対して、関数$f(x)=x^n$の導関数を定義にしたがって求めよ。
この動画を見る 
PAGE TOP