これ知ってる?ある公式を知ってれば一瞬で解ける問題! #Shorts - 質問解決D.B.(データベース)

これ知ってる?ある公式を知ってれば一瞬で解ける問題! #Shorts

問題文全文(内容文):
$ tan30°=tan 10°・tan50°・tan70°$を示せ。
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ tan30°=tan 10°・tan50°・tan70°$を示せ。
投稿日:2022.08.14

<関連動画>

福田のおもしろ数学248〜cos(cox x)=sin(sin x)の解が存在するかどうかを調べる

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
方程式 $\cos (\cos x) = \sin (\sin x)$ は実数解をもつか?
この動画を見る 

【高校数学】 数Ⅱ-113 加法定理の応用③・半角の公式編

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\sin^2 \displaystyle \frac{\alpha}{2}=$

②$\cos ^2 \displaystyle \frac{\alpha}{2}=$

③$\tan ^2 \displaystyle \frac{\alpha}{2}=$

◎$\displaystyle \frac{3}{2}π \lt \alpha \lt 2π$で、$\sin \alpha=-\displaystyle \frac{3}{5}$のとき、次の値を求めよう。

④$\sin \displaystyle \frac{\alpha}{2}=$

⑤$\cos \displaystyle \frac{\alpha}{2}=$

⑥$\tan \displaystyle \frac{\alpha}{2}=$
この動画を見る 

【短時間でポイントチェック!!】半角の公式〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$\frac{\pi}{2}<\theta<\pi$で$\sin\theta=\frac{1}{3}$のとき$\cos\frac{\theta}{2}$は?
この動画を見る 

【高校数学】 数Ⅱ-114 三角関数を含む方程式・不等式⑦

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$0 \leqq x \lt 2π$のとき、次の方程式を書こう。

①$2 \cos 2x+1=4\sin x$

②$\sin2x=\cos x$
この動画を見る 

【高校数学】 数Ⅱ-118 三角関数の合成①

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の式を$rsin(\theta+\alpha)$の形に変形しよう。ただし、$r \gt 0 ,-π \lt \alpha \lt π$とする。

①$\sqrt{ 3 } \sin \theta+\cos \theta$

②$\sqrt{ 2 } \sin \theta-\sqrt{ 6 } \cos \theta$

③$3 \sin \theta+4 \cos \theta$
この動画を見る 
PAGE TOP