福田の1.5倍速演習〜合格する重要問題094〜青山学院大学2020年度理工学部第5問〜グラフと面積と回転体の体積 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題094〜青山学院大学2020年度理工学部第5問〜グラフと面積と回転体の体積

問題文全文(内容文):
$\Large\boxed{5}$ 関数$f(x)=\displaystyle\frac{1}{x^2+1}$について、以下の問いに答えよ。
(1)y=f(x)のグラフの概形を描け。凹凸も調べること。
(2)原点をOとし、y=f(x)のグラフの変曲点のうちx座標が正のものをPとする。
直線OPとy軸、y=f(x)のグラフとで囲まれた図形をDとする。Dの面積Sを求めよ。
(3)(2)の図形Dをy軸の周りに1回転してできる回転体の体積Vを求めよ。

2020青山学院大学理工学部過去問
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#体積・表面積・回転体・水量・変化のグラフ#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 関数$f(x)=\displaystyle\frac{1}{x^2+1}$について、以下の問いに答えよ。
(1)y=f(x)のグラフの概形を描け。凹凸も調べること。
(2)原点をOとし、y=f(x)のグラフの変曲点のうちx座標が正のものをPとする。
直線OPとy軸、y=f(x)のグラフとで囲まれた図形をDとする。Dの面積Sを求めよ。
(3)(2)の図形Dをy軸の周りに1回転してできる回転体の体積Vを求めよ。

2020青山学院大学理工学部過去問
投稿日:2023.01.31

<関連動画>

佐賀大 三次関数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^3-x$上を点$P$が原点から点$A(a,a^3-a)$まで動く
$(a \gt 0)\triangle OAP$の最大値を求めよ

出典:2005年佐賀大学 過去問
この動画を見る 

福田のわかった数学〜高校3年生理系057〜微分(2)逆関数の微分

アイキャッチ画像
単元: #微分とその応用#微分法#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(2) 逆関数の微分\\
\\
y=\tan x  (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})\\
\\
の逆関数の第2次導関数を求めよ。
\end{eqnarray}
この動画を見る 

横市(医)弘前大 因数分解・微分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#微分とその応用#微分法#色々な関数の導関数#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数Ⅲ#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
横浜市立大学過去問題
因数分解せよ
$a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2$

弘前大学過去問題
関数y=f(x)において
$\displaystyle\lim_{x \to a}\frac{x^2f(x)-a^2f(a)}{x^2-a^2}$をa,f(a),f'(a)を用いて表せ。
この動画を見る 

福田のわかった数学〜高校3年生理系058〜微分(3)媒介変数表示の微分

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#色々な関数の導関数#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数列\textrm{III} 微分(3) 媒介変数表示\\
x=a(\theta-\sin\theta), y=a(1-\cos\theta)のとき、\frac{dy}{dx},\frac{d^2y}{dx^2}を\thetaで表せ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系068〜微分(13)関数方程式

アイキャッチ画像
単元: #微分とその応用#微分法#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(13) 関数方程式\\
x \gt 0 で定義された微分可能な関数f(x)において、f(xy)=f(x)+f(y)\\
が正の数x,\ yに対して常に成り立ち、f'(1)=1とする。\\
\\
(1)f(1) を求めよ。\\
(2)f'(x)=\frac{1}{x} を示せ。
\end{eqnarray}
この動画を見る 
PAGE TOP