【高校数学】命題と条件の例題~基礎を固めよう~ 1-16.5【数学Ⅰ】 - 質問解決D.B.(データベース)

【高校数学】命題と条件の例題~基礎を固めよう~ 1-16.5【数学Ⅰ】

問題文全文(内容文):
1⃣
$x$は実数、$n$は自然数とする。次の命題の真偽を調べよ。
(a) $x \gt 1 \Rightarrow x \gt 0$
(b) $x \leqq -1 \Rightarrow |x| \gt 2$
(c) $|x| \leqq \Rightarrow |x-1| \lt 3$
(d) $n$は$18$の正の約数$\Rightarrow n$は$36$の正の約数

-----------------

2⃣
$x,y$は実数、$m$は整数とする。次の条件の否定を述べよ
(a) $x \neq 1$かつ$y = 4$
(b) $x \leqq 3$または$y \gt 7$
(c) $-1 \leqq x \lt -2$
(d) $m$は偶数または$3$の倍数である
(e) $x,y$はともに無理数である
チャプター:

00:00 はじまり

00:16 問題だよ

00:26 問題解説(1)

04:23 問題解説(2)

06:25 まとめ

06:42 まとめノート

単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
$x$は実数、$n$は自然数とする。次の命題の真偽を調べよ。
(a) $x \gt 1 \Rightarrow x \gt 0$
(b) $x \leqq -1 \Rightarrow |x| \gt 2$
(c) $|x| \leqq \Rightarrow |x-1| \lt 3$
(d) $n$は$18$の正の約数$\Rightarrow n$は$36$の正の約数

-----------------

2⃣
$x,y$は実数、$m$は整数とする。次の条件の否定を述べよ
(a) $x \neq 1$かつ$y = 4$
(b) $x \leqq 3$または$y \gt 7$
(c) $-1 \leqq x \lt -2$
(d) $m$は偶数または$3$の倍数である
(e) $x,y$はともに無理数である
投稿日:2020.07.30

<関連動画>

だからどうした?

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x=5+2\sqrt6,\dfrac{x-1}{\sqrt x}$
これを解け.
この動画を見る 

福田の一夜漬け数学〜2次関数の最大最小(1)〜高校1年生

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(問)関数$f(x)=ax^2-2ax+b$ $(-1 \leqq x \leqq 2)$の最大値が5,最小値は$1$のとき、
定数$a,b$を求めよ。
この動画を見る 

【数Ⅰ】【図形と計量】余弦定理応用1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の各場合について,△ABC の残りの辺の長さと角の大きさを求めよ。
(1) b=3,c=√3,B=60°
(2) b=2√3,c=2,C=30°
この動画を見る 

福田の数学〜東京大学2023年文系第4問〜四面体の体積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#図形と方程式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 半径1の球面上の相異なる4点A,B,C,Dが
AB=1, AC=BC, AD=BD, $\cos\angle ACB$=$\cos\angle ADB$=$\displaystyle\frac{4}{5}$
を満たしているとする。
(1)三角形ABCの面積を求めよ。
(2)四角形ABCDの体積を求めよ。

2023東京大学文系過去問
この動画を見る 

福田の数学〜中央大学2021年経済学部第1問(3)〜三角関数の最大

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}} (3)-\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$
のとき、次の関数が最大値をとるときのxの値を求めよ。
$y=\sin x+\cos^2x$

2021中央大経済学部過去問
この動画を見る 
PAGE TOP