福田の数学〜立教大学2025理学部第2問〜三角関数の最大最小の定番 - 質問解決D.B.(データベース)

福田の数学〜立教大学2025理学部第2問〜三角関数の最大最小の定番

問題文全文(内容文):

$\boxed{2}$

実数$x$に対し、関数$f(x)$を

$f(x)=\sin^3x+\cos^3x+4sin x \cos x$

により定める。

また、$t=\sin x+\cos x$とおく。次の問いに答えよ。

(1)$\sin x \cos x$を$t$を用いて表せ。

(2)$f(x)$を$t$を用いて表せ。

(3)$x$がすべてに実数を動くとき、

$t$のとりうる値の範囲を求めよ。

(4)$x$がすべてに実数を動くとき、

$f(x)$の最大値と最小値をそれぞれ求めよ。

$2025$年立教大学理学部過去問題
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

実数$x$に対し、関数$f(x)$を

$f(x)=\sin^3x+\cos^3x+4sin x \cos x$

により定める。

また、$t=\sin x+\cos x$とおく。次の問いに答えよ。

(1)$\sin x \cos x$を$t$を用いて表せ。

(2)$f(x)$を$t$を用いて表せ。

(3)$x$がすべてに実数を動くとき、

$t$のとりうる値の範囲を求めよ。

(4)$x$がすべてに実数を動くとき、

$f(x)$の最大値と最小値をそれぞれ求めよ。

$2025$年立教大学理学部過去問題
投稿日:2025.06.08

<関連動画>

埼玉大 微分・積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#埼玉大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-9x^2$
$f(x)$の接線で$(3,0)$を通り、接点の$x$座標が負のものを$y=ax+b$
接点の$x$座標を$p$とする。
$\displaystyle \int_{p}^{ 3 }|f(x)-(ax+b)|dx$の値

出典:2008年埼玉大学 過去問
この動画を見る 

福田のおもしろ数学580〜100より小さい正の整数を50個選んだとき互いに素な整数が存在する証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$100$より小さい互いに異なる正の整数を

$50$個選んだとき、その中に

互いに素な$2$つの整数が必ず

存在することを証明して下さい。
    
この動画を見る 

04岡山県教員採用試験(数学:4番 積分)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#その他#不定積分・定積分#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
$\displaystyle \int_{}^{} \sin^{-1}x \ dx$を計算せよ.
この動画を見る 

福田の1.5倍速演習〜合格する重要問題044〜北海道大学2017年度理系第1問〜不等式の証明と整数問題

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#一次不等式(不等式・絶対値のある方程式・不等式)#整数の性質#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
自然数の2乗となる数を平方数という。
(1)自然数a,n,kに対して、
$n(n+1)+a=(n+k)^2$が成り立つとき、
$a \geqq k^2+2k-1$
が成り立つことを示せ。
(2)$n(n+1)+14$が平方数となるような自然数nを全て求めよ。

2017北海道大学理系過去問
この動画を見る 

東邦(薬)放物線内の格子点の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#数学(高校生)#東邦大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$自然数
$y=x^2-3x+3n+2$と$y=3nx$とで囲まれた図形の内部(境界線を含む)の格子点の数を求めよ

出典:1994年東邦大学 過去問
この動画を見る 
PAGE TOP