大学入試問題#822「これ、積分で出題されるんやー」 #筑波大学(2022) #定積分 - 質問解決D.B.(データベース)

大学入試問題#822「これ、積分で出題されるんやー」 #筑波大学(2022) #定積分

問題文全文(内容文):
$\displaystyle \int log(x+\sqrt{ x^2+1 }) dx$

出典:2022年筑波大学
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int log(x+\sqrt{ x^2+1 }) dx$

出典:2022年筑波大学
投稿日:2024.05.18

<関連動画>

#筑波大学(2019) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} xe^{2x} dx$

出典:2019年筑波大学
この動画を見る 

大学入試問題#821「王道問題」 #筑波大学(2022) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2} \displaystyle \frac{2x+3}{x^2+2x+4} dx$

出典:2022年筑波大学
この動画を見る 

大学入試問題#913「作成者サイコ−!」 #広島市立大学後期2024

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2}^{8} \displaystyle \frac{1}{x(x+1)}log \displaystyle \frac{x}{x+1} dx$

出典:2024年 広島市立大学後期試験
この動画を見る 

絶対に落としたくない問題です【自治医科大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数$f(x)$は,等式$f(x)=3x^2 \displaystyle \int_{-1}^{1} f(t) dt+x+\displaystyle \int_{0}^{1} [{f(t)}]^{2} dt+$
$\displaystyle \int_{0}^{1} f(t) dt$を満たす。
$\displaystyle \int_{0}^{1} f(t) dt \neq 0$とするとき,$f(0)$の値を求めよ。


自治医科大過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第3問〜定積分で表された関数の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}$実数$k \gt 0$ に対して、関数$A(k)=\int_0^2|x^2-kx|dx$とすると

$A(k)=
\left\{\begin{array}{1}
\frac{\boxed{\ \ アイ\ \ }\ k^3+\ \boxed{\ \ ウエ\ \ }\ k^2+\ \boxed{\ \ オカ\ \ }\ k+\ \boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}
(0 \lt k \lt \boxed{\ \ サシ\ \ })

\frac{\boxed{\ \ スセ\ \ }\ k+\ \boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}(\boxed{\ \ サシ\ \ } \leqq k)
\end{array}
\right.$
となる。この関数A(k)が最小となるのは$k=\sqrt{\boxed{\ \ テト\ \ }}$のときで、そのときの
A(k)の値は$\frac{\boxed{\ \ ナニ\ \ }+\boxed{\ \ ヌネ\ \ }\sqrt{\boxed{\ \ ノハ\ \ }}}{\boxed{\ \ ヒフ\ \ }}$

2022慶應義塾大学総合政策学部過去問
この動画を見る 
PAGE TOP