大学入試問題#822「これ、積分で出題されるんやー」 #筑波大学(2022) #定積分 - 質問解決D.B.(データベース)

大学入試問題#822「これ、積分で出題されるんやー」 #筑波大学(2022) #定積分

問題文全文(内容文):
$\displaystyle \int log(x+\sqrt{ x^2+1 }) dx$

出典:2022年筑波大学
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int log(x+\sqrt{ x^2+1 }) dx$

出典:2022年筑波大学
投稿日:2024.05.18

<関連動画>

福田の数学〜定積分で表された関数の標準問題〜慶應義塾大学2023年環境情報学部第2問〜定積分で表された関数と共通接線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
関数f(x)が
$f(x)=-2x^2\displaystyle \int_{0}^{ 1 } f(t) dt-12x+\dfrac{2}{9}\displaystyle \int_{-1}^{ 0 } f(t) dt$

$g(x)=\displaystyle \int_{0}^{ 1 } (3x^2+t)g(t)dt-\dfrac{3}{4}$
を満たしている。このとき
$f(x)=\fbox{ア}x^2-12x+\fbox{イ},g(x)=\fbox{ウ}x^2+\fbox{エ}$
である。またxy平面上のy=f(x)とy=g(x)のグラフの共通接戦は$y=\fbox{オ}x+\dfrac{\fbox{カ}}{\fbox{キ}}$
である。なお、nを0または生の整数としたとき、$x^n$の不定積分は
$\displaystyle \int_{}^{}x^ndx=\dfrac{1}{n+1}x^{n+1}+C$(Cは積分定数)である。
この動画を見る 

複素関数論⑭ 高専数学*5(1)(2) 複素積分の性質

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#微分法と積分法#複素数#不定積分・定積分#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
複素関数論⑭複素積分の性質に関して解説します.
この動画を見る 

#茨城大学(2022) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \cos2x\times\sin\ x\ cos\ x\ dx$

出典:2022年茨城大学
この動画を見る 

【数Ⅱ】【微分法と積分法】条件からの関数決定2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす2次関数 $f(x)$ を求めよ。

(1)$\int_{-1}^{1} f(x) \,dx = 0$,
$\int_{0}^{2} f(x) \,dx = 10$
, $\int_{-1}^{1} x f(x) \,dx = \frac{4}{3}$

(2)
$\int_{0}^{2} f(x) \,dx = 1$,
$\int_{0}^{2} x f(x) \,dx = 1$,
$\int_{0}^{2} x^2 f(x) \,dx = 2$
この動画を見る 

#山梨大学2013#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#山梨大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-10}^{0} \displaystyle \frac{1}{(x+11)(x+12)}$ $dx$

出典:2013年山梨大学
この動画を見る 
PAGE TOP