問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (1)x,yを実数とする。次の条件を考える。\hspace{130pt}\\
p:xyが無理数である\\
q:x,yがともに無理数である\\
r:x,yの少なくとも一方が無理数である\\
(\textrm{i})以下から真の命題をすべて選べ。\\
(\textrm{a})p \Rightarrow q\ \ \ (\textrm{b})p \Rightarrow r\ \ \ (\textrm{c})q \Rightarrow p\ \ \ (\textrm{d})q \Rightarrow r\ \ \ (\textrm{e})r \Rightarrow p\ \ \ (\textrm{f})r \Rightarrow q\ \ \ \\
(\textrm{ii})x,yが命題「p \Rightarrow q」の判例であるための必要十分条件を、すべて選べ。\\
(\textrm{a})「xyが無理数」かつ「x,yが共に有理数」である\\
(\textrm{b})「xyが有理数」かつ「x,yが共に有理数」である\\
(\textrm{c})「xyが有理数」かつ「xが有理数、または、yが有理数」である\\
(\textrm{d})「xyが無理数」かつ「xが有理数、または、yが有理数」である\\
(\textrm{e})「xyが無理数、かつxが有理数」または「xyが無理数、かつ、yが有\\
理数」である\\
(\textrm{f})「xyが無理数、かつxが有理数」または「xyが有理数、かつ、yが有\\
理数」である\\
\end{eqnarray}
2022上智大学理工学部過去問
\begin{eqnarray}
{\large\boxed{1}}\ (1)x,yを実数とする。次の条件を考える。\hspace{130pt}\\
p:xyが無理数である\\
q:x,yがともに無理数である\\
r:x,yの少なくとも一方が無理数である\\
(\textrm{i})以下から真の命題をすべて選べ。\\
(\textrm{a})p \Rightarrow q\ \ \ (\textrm{b})p \Rightarrow r\ \ \ (\textrm{c})q \Rightarrow p\ \ \ (\textrm{d})q \Rightarrow r\ \ \ (\textrm{e})r \Rightarrow p\ \ \ (\textrm{f})r \Rightarrow q\ \ \ \\
(\textrm{ii})x,yが命題「p \Rightarrow q」の判例であるための必要十分条件を、すべて選べ。\\
(\textrm{a})「xyが無理数」かつ「x,yが共に有理数」である\\
(\textrm{b})「xyが有理数」かつ「x,yが共に有理数」である\\
(\textrm{c})「xyが有理数」かつ「xが有理数、または、yが有理数」である\\
(\textrm{d})「xyが無理数」かつ「xが有理数、または、yが有理数」である\\
(\textrm{e})「xyが無理数、かつxが有理数」または「xyが無理数、かつ、yが有\\
理数」である\\
(\textrm{f})「xyが無理数、かつxが有理数」または「xyが有理数、かつ、yが有\\
理数」である\\
\end{eqnarray}
2022上智大学理工学部過去問
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (1)x,yを実数とする。次の条件を考える。\hspace{130pt}\\
p:xyが無理数である\\
q:x,yがともに無理数である\\
r:x,yの少なくとも一方が無理数である\\
(\textrm{i})以下から真の命題をすべて選べ。\\
(\textrm{a})p \Rightarrow q\ \ \ (\textrm{b})p \Rightarrow r\ \ \ (\textrm{c})q \Rightarrow p\ \ \ (\textrm{d})q \Rightarrow r\ \ \ (\textrm{e})r \Rightarrow p\ \ \ (\textrm{f})r \Rightarrow q\ \ \ \\
(\textrm{ii})x,yが命題「p \Rightarrow q」の判例であるための必要十分条件を、すべて選べ。\\
(\textrm{a})「xyが無理数」かつ「x,yが共に有理数」である\\
(\textrm{b})「xyが有理数」かつ「x,yが共に有理数」である\\
(\textrm{c})「xyが有理数」かつ「xが有理数、または、yが有理数」である\\
(\textrm{d})「xyが無理数」かつ「xが有理数、または、yが有理数」である\\
(\textrm{e})「xyが無理数、かつxが有理数」または「xyが無理数、かつ、yが有\\
理数」である\\
(\textrm{f})「xyが無理数、かつxが有理数」または「xyが有理数、かつ、yが有\\
理数」である\\
\end{eqnarray}
2022上智大学理工学部過去問
\begin{eqnarray}
{\large\boxed{1}}\ (1)x,yを実数とする。次の条件を考える。\hspace{130pt}\\
p:xyが無理数である\\
q:x,yがともに無理数である\\
r:x,yの少なくとも一方が無理数である\\
(\textrm{i})以下から真の命題をすべて選べ。\\
(\textrm{a})p \Rightarrow q\ \ \ (\textrm{b})p \Rightarrow r\ \ \ (\textrm{c})q \Rightarrow p\ \ \ (\textrm{d})q \Rightarrow r\ \ \ (\textrm{e})r \Rightarrow p\ \ \ (\textrm{f})r \Rightarrow q\ \ \ \\
(\textrm{ii})x,yが命題「p \Rightarrow q」の判例であるための必要十分条件を、すべて選べ。\\
(\textrm{a})「xyが無理数」かつ「x,yが共に有理数」である\\
(\textrm{b})「xyが有理数」かつ「x,yが共に有理数」である\\
(\textrm{c})「xyが有理数」かつ「xが有理数、または、yが有理数」である\\
(\textrm{d})「xyが無理数」かつ「xが有理数、または、yが有理数」である\\
(\textrm{e})「xyが無理数、かつxが有理数」または「xyが無理数、かつ、yが有\\
理数」である\\
(\textrm{f})「xyが無理数、かつxが有理数」または「xyが有理数、かつ、yが有\\
理数」である\\
\end{eqnarray}
2022上智大学理工学部過去問
投稿日:2022.10.15