福田の数学〜北里大学2022年医学部第3問〜確率と漸化式の融合問題 - 質問解決D.B.(データベース)

福田の数学〜北里大学2022年医学部第3問〜確率と漸化式の融合問題

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}1つの箱を置ける台と2つの箱A, Bがある。箱Aには赤玉2個、青玉2個が\hspace{40pt}\\
入っており、箱Bには白玉3個、青玉1個が入っている。台の上に箱Aを置き、\hspace{20pt}\\
次の操作を繰り返す。\hspace{224pt}\\
(操作) 台に置かれている箱から玉を1個取り出して色を調べてから箱に戻し、台\\
に置かれている箱を台から降ろす。取りだした玉が青球であれば箱Bを台\\
に置き、それ以外の色の玉であれば箱Aを台に置く。\hspace{74pt}\\
正の整数nに対し、n回目の操作を終えたときに、台に箱Aが置かれている確率\hspace{17pt}\\
をa_n、箱Bが置かれている確率をb_nとおく。次の問いに答えよ。\hspace{70pt}\\
(1) 正の整数nに対し、b_nとa_{n+1}をそれぞれ a_n を用いて表せ。\hspace{80pt}\\
(2) 正の整数nに対し、a_nをnを用いて表せ。\hspace{143pt}\\
(3) 正の整数nに対し、1回目からn回目までのn回の操作で白玉を1回も取り出\hspace{22pt}\\
さない確率をnを用いて表せ。\hspace{190pt}\\
(4)正の整数nに対し、1回目からn回目までのn回の操作で白玉をちょうど1回\hspace{21pt}\\
だけ取り出す確率をnを用いて表せ。\hspace{165pt}
\end{eqnarray}

2022北里大学医学部過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}1つの箱を置ける台と2つの箱A, Bがある。箱Aには赤玉2個、青玉2個が\hspace{40pt}\\
入っており、箱Bには白玉3個、青玉1個が入っている。台の上に箱Aを置き、\hspace{20pt}\\
次の操作を繰り返す。\hspace{224pt}\\
(操作) 台に置かれている箱から玉を1個取り出して色を調べてから箱に戻し、台\\
に置かれている箱を台から降ろす。取りだした玉が青球であれば箱Bを台\\
に置き、それ以外の色の玉であれば箱Aを台に置く。\hspace{74pt}\\
正の整数nに対し、n回目の操作を終えたときに、台に箱Aが置かれている確率\hspace{17pt}\\
をa_n、箱Bが置かれている確率をb_nとおく。次の問いに答えよ。\hspace{70pt}\\
(1) 正の整数nに対し、b_nとa_{n+1}をそれぞれ a_n を用いて表せ。\hspace{80pt}\\
(2) 正の整数nに対し、a_nをnを用いて表せ。\hspace{143pt}\\
(3) 正の整数nに対し、1回目からn回目までのn回の操作で白玉を1回も取り出\hspace{22pt}\\
さない確率をnを用いて表せ。\hspace{190pt}\\
(4)正の整数nに対し、1回目からn回目までのn回の操作で白玉をちょうど1回\hspace{21pt}\\
だけ取り出す確率をnを用いて表せ。\hspace{165pt}
\end{eqnarray}

2022北里大学医学部過去問
投稿日:2022.10.30

<関連動画>

【数A】中高一貫校用問題集(論理・確率編)場合の数と確率:場合の数:硬貨の選び方 5円玉4枚、10円玉2枚、50円玉1枚、100円玉2枚の一部、または全部使って支払うことができる金額は何通りか

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
5円玉4枚、10円玉2枚、50円玉1枚、100円玉2枚の一部、または全部使って支払うことができる金額は何通りか。
この動画を見る 

解けるかな?

アイキャッチ画像
単元: #算数(中学受験)#数A#場合の数と確率#場合の数#場合の数#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
机の上にたくさんのコインが置いてます。
そのうち10枚だけ表、残りは全部裏が上になっています。
目隠しをした状態で表が上になっているコインの枚数が同じような
2つのグループに分けるにはどうすればよいか?
ただし、触って表裏の判断はできないとする
この動画を見る 

福田の数学〜早稲田大学2023年理工学部第2問〜玉を取り出す確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数学的帰納法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 赤玉と黒玉が入っている袋の中から無作為に玉を1つ取り出し、取り出した玉を袋に戻した上で、取り出した玉と同じ色の玉をもう1つ袋に入れる操作を繰り返す。以下の問いに答えよ。
(1)初めに袋の中に赤玉が1個、黒玉が1個入っているとする。n回の操作を行ったとき、赤玉をちょうどk回取り出す確率を$P_n(k)$(k=0,1,...,n)とする。
$P_1(k)$と$P_2(k)$を求め、さらに$P_n(k)$を求めよ。
(2)初めに袋の中に赤玉がr個、黒玉がb個(r≧1, b≧1)入っているとする。n回の操作を行ったとき、k回目に赤玉が、それ以外ではすべて黒玉が取り出される確率$Q_n(k)$(k=1,2,..., n)とする。$Q_n(k)$はkによらないことを示せ。

2023早稲田大学理工学部過去問
この動画を見る 

福田の数学〜東京理科大学2023年創域理工学部第1問(1)〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)(a)1個のさいころを4回続けて投げるとき、4回とも同じ目が出る確率は
$\displaystyle\frac{1}{\boxed{\ \ アイウ\ \ }}$であり、3, 4, 5, 6の目がそれぞれ1回ずつ出る確率は$\displaystyle\frac{1}{\boxed{\ \ エオ\ \ }}$である。
(b)1個のさいころを4回続けて投げて、出た目を順に左から並べて4桁の整数Nを作る。例えば、1回目に2、2回目に6、3回目に1、4回目に2の目がでた場合はN=2612である。Nが偶数となる確率は$\displaystyle\frac{1}{\boxed{\ \ カ\ \ }}$であり、N≧2023 となる確率は$\displaystyle\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}$であり、N≧5555 となる確率は$\displaystyle\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシス\ \ }}$である。
この動画を見る 

福田の数学〜京都大学2022年理系第2問〜連続しない自然数を選ぶ確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 箱の中に1からnまでの番号の付いたn枚の札がある。ただし、n \geqq 5とし、\\
同じ番号の札はないとする。この箱から3枚の札を同時に取り出し、札の番号を\\
小さい順にX,Y,Zとする。このとき、Y-X \geqq 2かつZ-Y \geqq 2となる確率を\\
求めよ。
\end{eqnarray}

2022京都大学理系過去問
この動画を見る 
PAGE TOP