2020問題 整数 合同式 - 質問解決D.B.(データベース)

2020問題 整数 合同式

問題文全文(内容文):
$2020^{2n-1}+6・2^{4n-1}$は11の倍数であることを示せ
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2020^{2n-1}+6・2^{4n-1}$は11の倍数であることを示せ
投稿日:2020.02.08

<関連動画>

素数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$5m^2+4mn-n^2$が素数となる自然数$(m,n)$は無限にあることを示せ.
この動画を見る 

高校入試 整数問題 大阪星光学院

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x+3y+6z=30を満たす自然数(x,y,z)の組は▢組ある
大阪星光学院高等学校
この動画を見る 

数字を規則的に並べるだけで平方数ができる定理を発見したぜ

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$111…11 555…56は平方数であることを示せ.$
この動画を見る 

京都大(改)良問再投稿 3で割った余りを秒で出す

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x^{2020}+1)^{2020}+(x^2+1)^{2020}+1$を$x^2+x+1$で割った余りを求めよ

出典:京都大学 過去問
この動画を見る 

2022年問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(45+\sqrt{2022})^{2022}$の1の位を求めよ.
この動画を見る 
PAGE TOP