微分法と積分法 4STEP数Ⅱ 428 極値の利用2【マコちゃんねるがていねいに解説】 - 質問解決D.B.(データベース)

微分法と積分法 4STEP数Ⅱ 428 極値の利用2【マコちゃんねるがていねいに解説】

問題文全文(内容文):
関数f(x)=x³+ax²+bx+cがx=-1で極大値34をとり、x=5で極小値をとるように、定数a,b,cの値を求めよ。また、極小値を求めよ。
チャプター:

0:00 オープニング
0:03 問題概要
0:44 解説開始
2:08 極小値を求める

単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数f(x)=x³+ax²+bx+cがx=-1で極大値34をとり、x=5で極小値をとるように、定数a,b,cの値を求めよ。また、極小値を求めよ。
投稿日:2024.06.07

<関連動画>

三角関数 4STEP数Ⅱ282 三角関数の等式不等式応用【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
$0\leqq θ\lt 2π$のとき,次の方程式,不等式を解け。
(1)$2sin^2θ-3cosθ=0$
(2)$2cos^2θ-3sinθ-3=0$
(3)$2sin^2-\sqrt{3}sinθ\lt 0$
(4)$2sin^2θ-4<5cosθ$
(5)$2cos²θ\leqq sinθ+1$
(6)$sinθ\lt tanθ$
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2(1)。2次関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (1)座標平面上で、次の二つの2次関数のグラフについて考える。\\
\\
y=3x^2+2x+3 \ldots① y=2x^2+2x+3 \ldots②\\
\\
①、②の2次関数のグラフには次の共通点がある。\\
\\
共通点:・y軸との交点のy座標は\boxed{\ \ ア\ \ } である。\\
・y軸との交点における接線の方程式はy=\boxed{\ \ イ\ \ }\ x+\boxed{\ \ ウ\ \ } である。\\
\\
次の⓪~⑤の2次関数のグラフのうち、y軸との交点における接線が\\
y=\boxed{\ \ イ\ \ }\ x+\boxed{\ \ ウ\ \ }となるものは\\
\boxed{\ \ エ\ \ }である。\\
\\
\boxed{\ \ エ\ \ }の解答群\\
⓪y=3x^2-2x-3 ①y=-3x^2+2x-3 ②y=2x^2+2x-3\\
③y=2x^2-2x+3 ④y=-x^2+2x+3 ⑤y=-x^2-2x+3\\
\\
a,b,cを0でない実数とする。\\
曲線y=ax^2+bx+c上の点(0,\boxed{\ \ オ\ \ })における接線をlとすると、\\
その方程式はy=\boxed{\ \ カ\ \ }\ x+\boxed{\ \ キ\ \ } である。\\
\\
直線lとx軸との交点のx座標は\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コ\ \ }}である。\\
\\
a,b,cが正の実数であるとき、曲線y=ax^2+bx+cと\\
直線lおよび直線x=\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コ\ \ }}で囲まれた図形の\\
面積をSとするとS=\frac{ac^{\boxed{サ}}}{\boxed{\ \ シ\ \ }b^{\boxed{ス}}} \ldots③ である。\\
\\
③において、a=1とし、Sの値が一定となるように正の実数b,cの値を変化させる。\\
このとき、bとcの関係を表すグラフの概形は\boxed{\ \ セ\ \ }である。\\
(※\boxed{\ \ セ\ \ }の選択肢は動画参照)
\end{eqnarray}
この動画を見る 

福田の数学〜中央大学2022年経済学部第1問(5)〜微分係数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}(5)曲線y=x^3+ax^2+b上の点(1, -1)における接線の傾きが-3である。\\
このとき、定数a,bの値を求めよ。\hspace{150pt}
\end{eqnarray}
この動画を見る 

福田の数学〜大阪大学2022年文系第3問〜6分の1公式の証明と面積の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 以下の問いに答えよ。\\
(1)実数\alpha,\betaに対し、\\
\\
\int_{\alpha}^{\beta}(x-\alpha)(x-\beta)dx=\frac{(\alpha-\beta)^3}{6}\\
\\
が成り立つことを示せ。\\
(2)a,bをb \gt a^2を満たす定数とし、座標平面に点A(a,b)をとる。さらに、\\
点Aを通り、傾きがkの直線をlとし、直線lと放物線y=x^2で囲まれた部分の面積を\\
S(k)とする。kが実数全体を動くとき、S(k)の最小値を求めよ。
\end{eqnarray}
この動画を見る 

どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 3^{3^{4}}$ VS $ 4^{4^{3}}$
どちらが大きいか求めよ.
*$ 3^5=243,2^8=256$
$ ell= \displaystyle \lim_{n \to \infty} \left(1+\dfrac{1}{n}\right) \lt 3 $
この動画を見る 
PAGE TOP