問題文全文(内容文):
$\vec{a}=(4, 2), \vec{b}=(3, -1), \vec{x}=(p, q)$とする。
$\vec{x}$と$\vec{b}-\vec{a}$は平行で, $\vec{x}-\vec{b}$と$\vec{a}$は垂直であるとき,
pとqの値を求めよ。
$\vec{a}=(4, 2), \vec{b}=(3, -1), \vec{x}=(p, q)$とする。
$\vec{x}$と$\vec{b}-\vec{a}$は平行で, $\vec{x}-\vec{b}$と$\vec{a}$は垂直であるとき,
pとqの値を求めよ。
単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\vec{a}=(4, 2), \vec{b}=(3, -1), \vec{x}=(p, q)$とする。
$\vec{x}$と$\vec{b}-\vec{a}$は平行で, $\vec{x}-\vec{b}$と$\vec{a}$は垂直であるとき,
pとqの値を求めよ。
$\vec{a}=(4, 2), \vec{b}=(3, -1), \vec{x}=(p, q)$とする。
$\vec{x}$と$\vec{b}-\vec{a}$は平行で, $\vec{x}-\vec{b}$と$\vec{a}$は垂直であるとき,
pとqの値を求めよ。
投稿日:2025.05.26





