【数Ⅱ】中高一貫校問題集3(数式・関数編)394:図形と式:軌跡と方程式:2直線の交点の軌跡(直交する場合) - 質問解決D.B.(データベース)

【数Ⅱ】中高一貫校問題集3(数式・関数編)394:図形と式:軌跡と方程式:2直線の交点の軌跡(直交する場合)

問題文全文(内容文):
mが実数全体を取って動くとき、x+my-1=0,mx-y+2m=0の交点Pの軌跡を求めよ
チャプター:

00:00問題説明
00:06求める手段・考え方
01:23実際の計算
10:15除外点についての考え方

単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
教材: #TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
mが実数全体を取って動くとき、x+my-1=0,mx-y+2m=0の交点Pの軌跡を求めよ
投稿日:2022.07.21

<関連動画>

福田の数学〜北海道大学2025理系第3問〜部分積分と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

実数$a$および自然数$n$に対して、定積分

$I(a,n)=\displaystyle \int_{0}^{2\pi} e^{ax} \sin (nx) dx$

を考える。ここで$e$は自然対数の底である。

(1)$I(a,n)$を求めよ。

(2)$a_n=\dfrac{\log _n}{2\pi} (n=1,2,3,\cdots)$のとき、

極限$\displaystyle \lim_{n\to\infty} I(a_n,n)$を求めよ。

ただし、$\log_n$は$n$の自然対数である。

また、必要ならば$\displaystyle \lim_{n\to\infty}\dfrac{\log_n}{n}=0$である

ことを用いてもよい。

$2025$年北海道大学理系過去問題
この動画を見る 

福田のわかった数学〜高校3年生理系097〜不等式の証明(4)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(4)
$(x+2)\log(x+1) \geqq 2x (x \geqq 0)$を証明せよ。
この動画を見る 

【数Ⅱ】【三角関数】加法定理の応用2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
tanα=t のときcos² α ,sin2α ,cos2α を t で表せ。
この動画を見る 

【数Ⅱ】【微分法と積分法】方程式の解の個数5 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
方程式2x³-3x²-36x=aが1個の正の解と2個の負の解をもつように、定数aの値の範囲を定めよ。
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第6問〜楕円を軸以外の直線で回転させた立体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#積分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{6}}$直線$x+y=1$に接する楕円$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a \gt 0,\ b \gt 0)$がある。
このとき、$b^2=\boxed{\ \ ア\ \ }\ a^2+\boxed{\ \ イ\ \ }$である。
この楕円を直線$y=b$のまわりに1回転してできる立体の体積は、
$a=\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$のとき、
最大値$\frac{\boxed{\ \ オ\ \ }\sqrt{\boxed{\ \ カ\ \ }}}{\boxed{\ \ キ\ \ }}\pi^2$をとる。

2022早稲田大学人間科学部過去問
この動画を見る 
PAGE TOP