【数Ⅱ】解と係数の関係と対称式 (2-α)(2-β)の値【もっとも簡単な解き方】 - 質問解決D.B.(データベース)

【数Ⅱ】解と係数の関係と対称式 (2-α)(2-β)の値【もっとも簡単な解き方】

問題文全文(内容文):
$ x^2+2x+5=0の解を\alpha,\betaとする.(2-\alpha)(2-\beta)を求めよ.$
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ x^2+2x+5=0の解を\alpha,\betaとする.(2-\alpha)(2-\beta)を求めよ.$
投稿日:2022.01.07

<関連動画>

香川大 3次方程式実数解 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#解と判別式・解と係数の関係#数学(高校生)#香川大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
香川大学過去問題
$f(x)=x^3-3a^2x+a^2-a$について
(1)$f(x)=0$が相異3実根をもつようなaの範囲
(2)(1)のとき3つの解は-2aと2aの間にあることを示せ
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第1問(3)〜集合の要素の個数と2次方程式の解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#集合と命題(集合・命題と条件・背理法)#複素数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)整数kに対して、xの2次方程式x^2+kx+k+35=0の解を\alpha_k,\beta_kとおく。\\
ただし、方程式が重解をもつときは\alpha_k=\beta_kである。また\\
U=\left\{k|kは整数、かつ|k| \leqq 100 \right\}\\
を全体集合とし、その部分集合\\
A=\left\{k|k \in Uかつ\alpha_k,\beta_kはともに実数で\alpha_k≠\beta_k\right\}\\
B=\left\{k|k \in Uかつ\alpha_k,\beta_kの実数はともに2より大きい\right\}\\
C=\left\{k|k \in Uかつ\alpha_k,\beta_kの実部と虚部はすべて整数\right\}\\
を考える。このときn(A)=\boxed{\ \ (か)\ \ },n(A \cap B)=\boxed{\ \ (き)\ \ },n(\bar{ A } \cap B)=\boxed{\ \ (く)\ \ },\\
n(A \cap C)=\boxed{\ \ (け)\ \ },n(\bar{ A } \cap C)=\boxed{\ \ (こ)\ \ }である。ただし有限集合Xに対して\\
その要素の個数をn(X)で表す。また\bar{ A }はAの補集合である。
\end{eqnarray}
この動画を見る 

【数Ⅱ】複素数と方程式:解と係数の関係:「解と係数の関係」の基本を10分でマスター!

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
解と係数の関係の基本を10分でマスター!例題も4問解説!
この動画を見る 

ただの4次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$(3x-2)^4+(3x-4)^4=16$
この動画を見る 

福田の数学〜中央大学2022年理工学部第4問〜複素数平面上の共線条件と正三角形になる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#剰余の定理・因数定理・組み立て除法と高次方程式#図形への応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
中央大学2022年理工学部第4問解説です

tを実数とし、 xの3次式f(x) を
ƒ(x) = x³ + (1 − 2t)x² + (4 − 2t)x +4
により定める。以下の問いに答えよ。
(1) 3 次式f(x) を実数係数の2次式と1次式の積に因数分解し、f(x)=0 が虚数の
解をもつようなtの範囲を求めよ。
実数t が (1) で求めた範囲にあるとき、 方程式 f(x) = 0 の異なる2つの虚数解を
a,βとし、実数解をγとする。ただし、αの虚部は正、βの虚部は負とする。
以下、α, β,γを複素数平面上の点とみなす。
(2) α, β,γをtを用いて表せ。また、実数t が (1) で求めた範囲を動くとき、点α
が描く図形を複素数平面上に図示せよ。
(3) 3点 α, β, γが一直線上にあるようなtの値を求めよ。
(4) 3点 α, β, γが正三角形の頂点となるようなtの値を求めよ。
この動画を見る 
PAGE TOP