東邦(医)三角関数 最大値 - 質問解決D.B.(データベース)

東邦(医)三角関数 最大値

問題文全文(内容文):
$2\sin x\cos x+3\sqrt{ 2 }(\cos x+\sin x)$の最大値を求めよ

出典:東邦大学医学部 過去問
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#数学(高校生)#東邦大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2\sin x\cos x+3\sqrt{ 2 }(\cos x+\sin x)$の最大値を求めよ

出典:東邦大学医学部 過去問
投稿日:2020.03.02

<関連動画>

指数方程式の基本問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{8^x+27^x}{12^x+18^x}=\dfrac{7}{6}$
これを解け(実数解)
この動画を見る 

福田のおもしろ数学477〜イェンゼンの不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

イェンゼンの不等式

$f(x)$は凸関数、$\lambda i \geqq 0, \sum \lambda i=1$のとき、

$\lambda 1 f(x 1)+\lambda 2 f(x2) \geqq f(\lambda2x2)$

$\lambda 1 f(x 1)+\lambda 2 f(x2)+\lambda3f(x3) \geqq f(\lambda1x1+\lambda2x2+\lambda3x3)$

な成り立つ。証明して下さい。
    
この動画を見る 

複素数とは?名古屋工業大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\sqrt3+i)^m=(1+i)^n$,最小の自然数$m,n$を求めよ.

1967名古屋工大過去問

この動画を見る 

福田の数学〜慶應義塾大学2021年理工学部第1問〜直線群と通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $t$を実数とし、座標平面上の直線$l:(2t^2-4t+2)x$$-(t^2+2)y+4t+2=0$
を考える。

(1)直線$l$は$t$の値によらず、定点を通る。その定点の座標は$\boxed{\ \ ア\ \ }$である。

(2)直線$l$の傾きを$f(t)$とする。$f(t)$の値が最小となるのは$t=\boxed{\ \ イ\ \ }$
のときであり、最大となるのは$t=\boxed{\ \ ウ\ \ }$のときである。また、
$a$を実数とするとき、$t$に関する方程式$f(t)=a$がちょうど1個の
実数解をもつような$a$の値を全て求めると、$a=\boxed{\ \ エ\ \ }$である。

(3)$t$が実数全体を動くとき、直線$l$が通過する領域を$S$とする。また$k$を
実数とする。放物線$y=\displaystyle \frac{1}{2}(x-k)^2+\displaystyle \frac{1}{2}(k-1)^2$が領域$S$と共有点
を持つような$k$の値の範囲は$\boxed{\ \ オ\ \ } \leqq k \leqq \boxed{\ \ カ\ \ }$である。

2021慶應義塾大学理工学部過去問
この動画を見る 

16愛知県教員採用試験(数学:5番 対数,相加平均・相乗平均)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
5⃣$a=log_3x$ , $b=log_4y$
a+2b=3のときx+yの最小値を求めよ。
この動画を見る 
PAGE TOP