福田の一夜漬け数学〜等差数列・等比数列(1)〜高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜等差数列・等比数列(1)〜高校2年生

問題文全文(内容文):
初項から第10項までの和が550,初項から第20項までの和が700である
等差数列$\left\{a_n\right\}$について
(1)一般項$a_n$を求めよ。
(2)数列$\left\{a_n\right\}$の第20項から第30項までの和を求めよ。
(3)初項から第$n$項までの和$S_n$の最大値とそのときのnの値を求めよ。


初項から第4項までの和が45,初項から第8項までの和が765である
等比数列$\left\{a_n\right\}$を考える。
(1)一般項$a_n$を求めよ。
(2)数列$\left\{a_n\right\}$の公比が正であるとき、数列$\left\{a_{2n-1}\right\}$はどのような数列か。
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
初項から第10項までの和が550,初項から第20項までの和が700である
等差数列$\left\{a_n\right\}$について
(1)一般項$a_n$を求めよ。
(2)数列$\left\{a_n\right\}$の第20項から第30項までの和を求めよ。
(3)初項から第$n$項までの和$S_n$の最大値とそのときのnの値を求めよ。


初項から第4項までの和が45,初項から第8項までの和が765である
等比数列$\left\{a_n\right\}$を考える。
(1)一般項$a_n$を求めよ。
(2)数列$\left\{a_n\right\}$の公比が正であるとき、数列$\left\{a_{2n-1}\right\}$はどのような数列か。
投稿日:2018.04.24

<関連動画>

福田の一夜漬け数学〜確率漸化式(3)〜東京大学の問題に挑戦(受験編)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 片面を白色に、もう片面を黒色に塗った正方形の板が3枚ある。
この3枚の板を机の上に並べ、次の操作を繰り返し行う。
サイコロをふり、1か2の目が出たら左端の板を裏返し、3か4が出たら中央の
板を裏返し、5か6が出たら右端の板を裏返す。
(1)「白白白」から始めて、3回の操作の結果「黒白白」となる確率を求めよ。
(2)「白白白」から始めて、$n$回の操作の結果「黒白白」または「白黒白」または
「白白黒」となる確率を$p_n$とする。$p_{2k+1}$を求めよ。($k$は自然数とする)
この動画を見る 

等比数列の和

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$a+ar+ar^2=1$
$ar^3+ar^4+ar^5=8$
$ar^6+ar^7+ar^8=?$
この動画を見る 

【高校数学】 数B-79 数列の和と一般項②

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
初項から第$n$項までの和$S_n$が
次の式で表される数列$\{a_n\}$の一般項を求めよう.

①$S_n=n^2+2n+2$

②$S_n=a_{n}+(n-1)^2$
この動画を見る 

15東京都教員採用試験(数学1-(5) 数列の和の最小値)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1} - (5)$
$a_n=n^3-20n$
$S_n$の最小値とそのときの$n$の値を求めよ.
この動画を見る 

難解な数列の問題 By 英語orドイツ語シはBかHか さん

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$a_0=b_0=1$

$a_{n+1}=\displaystyle \frac{a_n}{a_n^2+b_n^2}$

$b_{n+1}=2-\displaystyle \frac{b_n}{a_n^2+b_n^2}$

一般項$a_n,b_n$を求めよ。
この動画を見る 
PAGE TOP