福田の入試問題解説〜北海道大学2022年理系第2問〜ベクトルと漸化式 - 質問解決D.B.(データベース)

福田の入試問題解説〜北海道大学2022年理系第2問〜ベクトルと漸化式

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ aはa≠1を満たす正の実数とする。xy平面上の点P_1,P_2,\ldots\ldots,P_n,\ldots\ldotsおよび\\
Q_1,Q_2,\ldots\ldots,Q_n,\ldots\ldotsが、すべての自然数nについて\\
\overrightarrow{ P_nP_{n+1} }=(1-a)\overrightarrow{ P_nQ_n },  \overrightarrow{ Q_nQ_{n+1} }=(0, \frac{a^{-n}}{1-a})\\
を満たしているとする。またP_nの座標を(x_n,y_n)とする。\\
(1)x_{n+2}をa, x_n, x_{n+1}で表せ。\\
(2)x_1=0, x_2=1のとき、数列\left\{x_n\right\}の一般項を求めよ。\\
(3)y_1=\frac{a}{(1-a)^2}, y_2-y_1=1のとき数列\left\{y_n\right\}の一般項を求めよ。
\end{eqnarray}

2022北海道大学理系過去問
単元: #大学入試過去問(数学)#平面上のベクトル#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ aはa≠1を満たす正の実数とする。xy平面上の点P_1,P_2,\ldots\ldots,P_n,\ldots\ldotsおよび\\
Q_1,Q_2,\ldots\ldots,Q_n,\ldots\ldotsが、すべての自然数nについて\\
\overrightarrow{ P_nP_{n+1} }=(1-a)\overrightarrow{ P_nQ_n },  \overrightarrow{ Q_nQ_{n+1} }=(0, \frac{a^{-n}}{1-a})\\
を満たしているとする。またP_nの座標を(x_n,y_n)とする。\\
(1)x_{n+2}をa, x_n, x_{n+1}で表せ。\\
(2)x_1=0, x_2=1のとき、数列\left\{x_n\right\}の一般項を求めよ。\\
(3)y_1=\frac{a}{(1-a)^2}, y_2-y_1=1のとき数列\left\{y_n\right\}の一般項を求めよ。
\end{eqnarray}

2022北海道大学理系過去問
投稿日:2022.03.07

<関連動画>

福田の数学〜慶應義塾大学2023年薬学部第1問(4)〜球面上の3点が作る三角形

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#円と方程式#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)座標空間に球面S:$(x-3)^2$+$(y+2)^2$+$(z-1)^2$=36 がある。球面Sが平面y=2 と交わってできる円をCとおく。
(i)円Cの中心の座標は$\boxed{\ \ ク\ \ }$であり、半径は$\boxed{\ \ ケ\ \ }$である。
(ii)円Cと平面x=3の交点をA,Bとし、AとB以外の球面S上の任意の点をPとする。三角形PABにおいて、辺PBを4:3に内分する点をD、線分ADを5:3に内分する点をMとし、直線PMと辺ABとの交点をEとする。このとき、AEの長さは$\boxed{\ \ コ\ \ }$である。ただし、Bのz座標はAのz座標よりも大きいとする。

2023慶應義塾大学薬学部過去問
この動画を見る 

【数学B/平面ベクトル】ベクトルの成分の成分計算

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\vec{ a }=(-1,2),\vec{ b }=(2,-3)$のとき、次のベクトルを成分で表し、その大きさを求めよ。
この動画を見る 

福田の数学〜東京医科歯科大学2022年理系第1問〜2つのベクトルで生成される異なる点の個数

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#平面上のベクトル#場合の数#三角関数#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
nを自然数とする。整数i,jに対し、xy平面上の点$P_{i,j}$の座標を
$(\cos\frac{2\pi}{n}i+\cos\frac{2\pi}{n}j, \sin\frac{2\pi}{n}i+\sin\frac{2\pi}{n}j)$
で与える。さらに、i,jを動かしたとき、$P_{i,j}$の取り得る異なる座標の
個数を$S_n$とする。このとき、以下の問いに答えよ。
(1)$n=3$のとき、$\triangle P_{0,0}P_{0,1}P_{0,2}$および$\triangle P_{1,0}P_{1,1}P_{1,2}$を同一平面上
に図示せよ。
(2)$S_4$を求めよ。
(3)平面上の異なる2点A,Bに対して、$AQ=BQ=1$であるような
同一平面上の点Qはいくつあるか。AB=dの値で場合分けして答えよ。
(4)$S_n$をnを用いて表せ。

2022東京医科歯科大学理系過去問
この動画を見る 

大学入試問題#899「初めてのベクトルやってみた」 #北海道大学(2024)

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: ますただ
問題文全文(内容文):
三角形$OAB$が
$|\overrightarrow{ OA }|=3,$ $|\overrightarrow{ AB }|=5,$ $\overrightarrow{ OA }.\overrightarrow{ AB }=10$
を満たしているとする。
三角形$OAB$の内接円の中心を$I$とし、この内接円と辺$OA$の接点を$H$とする。

1.辺$OB$の長さを求めよ。
2.$\overrightarrow{ OI }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$を用いて表せ。
3.$\overrightarrow{ HI }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$を用いて表せ。

出典:2024年北海道大学
この動画を見る 

【数B】ベクトル:ベクトルの基本⑤内積の基本計算1 始点を揃えて考える

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
内積の基本計算(直角三角形ABCにおける内積計算)に関して解説していきます.
この動画を見る 
PAGE TOP