2024年共通テスト速報〜数学ⅠA第1問の(1)〜福田の入試解説 - 質問解決D.B.(データベース)

2024年共通テスト速報〜数学ⅠA第1問の(1)〜福田の入試解説

問題文全文(内容文):
$n \lt 2\sqrt{ 13 } \lt n+1$を満たす整数nはアである。
実数a,bを$a=2\sqrt{ 13 }$-ア,b=$\frac{1}{a}$で定める。このとき
$b=\frac{イ+2\sqrt{13}}{ウ}$である。また、$a^2-9b^2=エオカ\sqrt{13}$である。
①(7$\lt 2\sqrt{13} \lt 8$)から$\frac{7}{2} \lt \sqrt{13} \lt 4$が成り立つ。
①と④($b=\frac{7+2\sqrt{13}}{3}$)から$\frac{m}{ウ} \lt b \lt \frac{m+1}{ウ}$を満たすmはキク
よって③($b=\frac{1}{a}$)から$\frac{a}{15} \lt a \lt \frac{ウ}{14}$・・・⑥が成り立つ。
$\sqrt{13}$の整数部分はケであり、②($a=2\sqrt{13}-7$)と⑥から$\sqrt{13}$の小数点第1位の数字はコ、小数点第2位の数字はサである。

2024共通テスト過去問
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
$n \lt 2\sqrt{ 13 } \lt n+1$を満たす整数nはアである。
実数a,bを$a=2\sqrt{ 13 }$-ア,b=$\frac{1}{a}$で定める。このとき
$b=\frac{イ+2\sqrt{13}}{ウ}$である。また、$a^2-9b^2=エオカ\sqrt{13}$である。
①(7$\lt 2\sqrt{13} \lt 8$)から$\frac{7}{2} \lt \sqrt{13} \lt 4$が成り立つ。
①と④($b=\frac{7+2\sqrt{13}}{3}$)から$\frac{m}{ウ} \lt b \lt \frac{m+1}{ウ}$を満たすmはキク
よって③($b=\frac{1}{a}$)から$\frac{a}{15} \lt a \lt \frac{ウ}{14}$・・・⑥が成り立つ。
$\sqrt{13}$の整数部分はケであり、②($a=2\sqrt{13}-7$)と⑥から$\sqrt{13}$の小数点第1位の数字はコ、小数点第2位の数字はサである。

2024共通テスト過去問
投稿日:2024.01.14

<関連動画>

【数Ⅰ】絶対値付きの不等式【場合分けしなくても解ける!? 裏技的解法も】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1)\vert x \vert \lt 3を解け.$
$(2)\vert 2x-1 \vert \lt x+4を解け.$
この動画を見る 

京大の三角比!気づければ簡単!【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\alpha,\beta$が$a>0°,\beta>0°,\alpha+\beta<180°$かつ$sin^2\alpha+sin^2\beta=sin^2(\alpha+\beta)$を満たすとき、
$sin\alpha+sin\beta$の取りうる範囲を求めよ。

京都大過去問
この動画を見る 

出た分野の授業します

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
共通部分と和集合の違い
この動画を見る 

整式の割り算!頻出です【山梨大学 入試問題】【数学】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
整式$x^{2014}$を整式$x^4+x^3+x^2+x+1$で割った余りを求めよ。

山梨大過去問
この動画を見る 

【わかりやすく解説】3つの集合の要素の個数(数学A/場合の数)

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
ある高校生のテスト$A$、テスト$B$、テスト$C$に合格した人全体の集合を$A,B,C$で表す。
$n(A)=60$,$n(B)=40$,$n(A \cap B)=15$,$n(C \cap A)=10$,$n(B \cup C)=55$,$n(C \cup A)=82$,$n(A \cup B \cup C)=100$のとき、次の問いに答えよ。
(1)テスト$C$に合格した人は何人か。

(2)テスト$A$、テスト$B$、テスト$C$全てに合格した人は何人か。

(3)テスト$A$、テスト$B$、テスト$C$のどれか1つに合格した人は何人か。
この動画を見る 
PAGE TOP