整数問題 履正社 (大阪) - 質問解決D.B.(データベース)

整数問題 履正社 (大阪)

問題文全文(内容文):
$\sqrt{\frac{900}{n}}$と$\frac{n+2}{9}$がともに自然数となる自然数nのうち最も小さいものは?
履正社高等学校
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{\frac{900}{n}}$と$\frac{n+2}{9}$がともに自然数となる自然数nのうち最も小さいものは?
履正社高等学校
投稿日:2023.08.13

<関連動画>

整数問題 二項定理

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^{3^n}+1$は3で何回割り切れるか求めよ。$(n$自然数$)$
この動画を見る 

自然数の和  日大習志野

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1からnまでの自然数の和=210
n=?(n:自然数)

日本大学習志野高等学校
この動画を見る 

素数にならないのはなぜ? 洛星

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$N=n^2+n+40$のnにどのような自然数を代入してもNは素数にはならない。
なぜ?

洛星高等学校(改)
この動画を見る 

三重大医)整数 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)#三重大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
三重大学
a,b,c,d素数
$f(x)=ax^3+bx^2+cx+d$
f(-1),f(0),f(1)はいずれも3で割り切れないとき、f(x)=0は整数の解をもたないことを示せ。
この動画を見る 

英国数学オリンピック 高校入試レベルの問題

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
すべてのxで次の式が成り立つ整数(a,b,c)をすべて求めよ.
$(x-10)(x-a)+1=(x+a)(x+c)$

英国数学オリンピック過去問
この動画を見る 
PAGE TOP