福田の数学〜中央大学2022年経済学部第3問〜下一桁が一致する整数と下二桁が一致する整数 - 質問解決D.B.(データベース)

福田の数学〜中央大学2022年経済学部第3問〜下一桁が一致する整数と下二桁が一致する整数

問題文全文(内容文):
正の整数xについて、以下の設問に答えよ。
なお、ここでxの下一桁とはxを10で割った余りであり、
xの下二桁とはxを100で割った余りであるとする。
(1)$10 \leqq x \leqq 40$の範囲で、xn下一桁と$x^2$の下一桁が一致するようなxの個数を求めよ。
(2)$10 \leqq x \leqq 99$の範囲で、$x^2$の下一桁と$x^4$の下一桁が一致するxをすべて足した数を
Yとする。整数Yの下一桁を求めよ。
(3)$10 \leqq x \leqq 99$の範囲で、$x^2$の下二桁がxと等しいものをすべて求めよ。
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
正の整数xについて、以下の設問に答えよ。
なお、ここでxの下一桁とはxを10で割った余りであり、
xの下二桁とはxを100で割った余りであるとする。
(1)$10 \leqq x \leqq 40$の範囲で、xn下一桁と$x^2$の下一桁が一致するようなxの個数を求めよ。
(2)$10 \leqq x \leqq 99$の範囲で、$x^2$の下一桁と$x^4$の下一桁が一致するxをすべて足した数を
Yとする。整数Yの下一桁を求めよ。
(3)$10 \leqq x \leqq 99$の範囲で、$x^2$の下二桁がxと等しいものをすべて求めよ。
投稿日:2022.11.10

<関連動画>

合同式の基礎 累乗の式変形

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^{2n+1}+4^{3n-1}$が7の倍数となる自然数$n$を3つ求めよ
この動画を見る 

津田塾大 基本対称式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は自然数である.
$abc,ab+bc+ca$,$a+b+c$がすべて3の倍数なら,$a,b,c$はすべて3の倍数であることを示せ.

2016津田塾大過去問
この動画を見る 

簡単な問題

アイキャッチ画像
単元: #数A#数Ⅱ#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \omega=1(\omega \neq 1)$であり,
$x=a+b $
$y=a\omega+b\omega^2 $
$z=a\omega^2+b\omega $である.

$ x^3+y^3+z^3$の値をa,bで表せ.
この動画を見る 

福田の1.5倍速演習〜合格する重要問題078〜京都大学2018年度文理共通問題〜素数の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#微分法と積分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $n^3$-7$n$+9 が素数となるような整数$n$を全て求めよ。

2018京都大学文理過去問
この動画を見る 

京大の整数問題【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
方程式$x^2+2y^2+2z^2-2xy-2xz+2yz-5=0$を満たす正の整数の組$(x,y,z)$をすべて求めよ。

京都大過去問
この動画を見る 
PAGE TOP