福田の一夜漬け数学〜図形と方程式〜直線の方程式(6)点と直線の距離の公式・基本、高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜図形と方程式〜直線の方程式(6)点と直線の距離の公式・基本、高校2年生

問題文全文(内容文):
${\Large\boxed{1}}$ 点(1,5)と直線$4x-3y+1=0$ の距離を求めよ。

${\Large\boxed{2}}$ 平行な2直線$2x-y+1=$, $2x-y-3=0$ の距離を求めよ。

${\Large\boxed{3}}$ 原点中心、半径2の円と直線$mx-y-3m+2=0$ 
が異なる2点で交わるように$m$の値の範囲を求めよ。
単元: #数Ⅱ#図形と方程式#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点(1,5)と直線$4x-3y+1=0$ の距離を求めよ。

${\Large\boxed{2}}$ 平行な2直線$2x-y+1=$, $2x-y-3=0$ の距離を求めよ。

${\Large\boxed{3}}$ 原点中心、半径2の円と直線$mx-y-3m+2=0$ 
が異なる2点で交わるように$m$の値の範囲を求めよ。
投稿日:2018.07.21

<関連動画>

【数Ⅱ】図形と方程式:円と直線! aを実数とする。円x²+y²-4x-8y+15=0と直線y=ax+1が 異なる2点A,Bで交わっている。 (2)弦ABの長さが最大になるときのaの値を求めなさい。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを実数とする。円$x^2+y^2-4x-8y+15=0$と直線$y=ax+1$が 異なる2点A,Bで交わっている。 (2)弦ABの長さが最大になるときのaの値を求めなさい。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜円の方程式(8)外から引いた接線(原点中心の円の場合)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#点と直線#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2=5$ の接線で、点(3,1)を通るものを求めよ。
また、接点の座標を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題049〜早稲田大学2019年度商学部第2問〜折れ線の長さの最小値問題

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#微分法と積分法#点と直線#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上において、放物線$y=x^2$上の点をP、円$(x-3)^2+(y-1)^2=1$上の
点をQ、直線$y=x-4$上の点をRとする。次の設問に答えよ。

(1)QR の最小値を求めよ。
(2)PR+QR の最小値を求めよ。

2019早稲田大学商学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題061〜早稲田大学2019年度社会科学部第1問〜円の通過範囲と放物線と円の位置関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#大学入試解答速報#数学
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ $k$を実数とする。座標平面において方程式
$x^2+y^2+x+(2k+1)y+k^2+1=0$
の表す図形$C$を考える。次の問いに答えよ。
(1)$C$が円であるような$k$の値の範囲を求めよ。ただし、点も円とみなすものとする。
(2)$k$が変化するとき、$C$が通る点($x,y$)の存在領域を座標平面上に図示せよ。
(3)(2)で求めた領域の境界線と(1)で求めた円が共有点をもたないような、$k$の値の
範囲を求めよ。

2019早稲田大学社会科学部過去問
この動画を見る 

信州大(医)多項式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数$x,y$が
$2^4-2x^3y-3x^3+3x^2y-xy+y^2+x-y=0$を満たすとき、$x^2+y^2-4y+4$の最小値は?

出典:信州大学医学部 過去問
この動画を見る 
PAGE TOP