【数C】【平面上のベクトル】ベクトルの成分3 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【平面上のベクトル】ベクトルの成分3 ※問題文は概要欄

問題文全文(内容文):
$\vec{ a }=(x ,-1)$ ,$\vec{ b }=(2 ,-3)$ について、
$\vec{ a }+3\vec{ b }$と $\vec{ b }-\vec{ a }$が
平行になるように、xの値を定めよ。
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\vec{ a }=(x ,-1)$ ,$\vec{ b }=(2 ,-3)$ について、
$\vec{ a }+3\vec{ b }$と $\vec{ b }-\vec{ a }$が
平行になるように、xの値を定めよ。
投稿日:2025.02.04

<関連動画>

【FULL】定期テスト直前対策!ベクトル解説動画フルパック流し【数B(新課程 数C)】

アイキャッチ画像
単元: #平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルのまとめ動画です。
ベクトルの基本から球面・平面の方程式まで
見たい内容のシーンをチャプターから選んで下さい!!
この動画を見る 

福田の数学〜九州大学2023年理系第3問〜ベクトルと論証PART1

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#集合と命題(集合・命題と条件・背理法)#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。座標平面上のベクトル$\overrightarrow{q}$に対して、次の条件を考える。
条件Ⅰ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす実数r, sが存在する。
条件Ⅱ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす整数r, sが存在する。
以下の問いに答えよ。
(1)条件Ⅰがすべての$\overrightarrow{q}$に対して成り立つとする。D $\ne$ 0であることを示せ。
以下、D $\ne$ 0であるとする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}・\overrightarrow{v}$=$\overrightarrow{n}・\overrightarrow{w}$=1, $\overrightarrow{m}・\overrightarrow{w}$=$\overrightarrow{n}・\overrightarrow{v}$=0
を満たすものを求めよ。
(3)さらにa, b, c, dが整数であるとし、x成分とy成分がともに整数であるすべてのベクトル$\overrightarrow{q}$に対して条件Ⅱが成り立つとする。Dのとりうる値をすべて求めよ。

2023九州大学理系過去問
この動画を見る 

福田の数学〜大阪大学2025理系第1問〜平面図形とベクトルの証明

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

平面上の三角形$OAB$を考える。

$\angle AOB$は鋭角、$OA=3,OB=t$とする。

また、点$A$から直線$OB$に下ろした垂線と

直線$OB$の交点を$C$とし、$OC=1$とする。

線分$AB$を$2:1$に内分する点を$P$、点$A$から

直線$OP$に下ろした垂線と直線$OB$との交点を

$R$とする。

(1)内積$\overrightarrow{OA}・\overrightarrow{OB}$を$t$を用いて表せ。

(2)線分$OR$の長さを$t$を用いて表せ。

(3)線分$OB$の中点を$M$とする。

点$R$が線分$MB$上にあるとき、

$t$のとりうる値の範囲を求めよ。

$2025$年大阪大学理系過去問題
この動画を見る 

【高校数学】ベクトルにおける点の存在範囲のコツ【数学のコツ】

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルにおける点の存在範囲のコツを解説していきます.
この動画を見る 

【高校数学】 数B-17 ベクトルの内積⑥

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$| \vec{ a } |=2,| \vec{ b } |=1$で、$\vec{ a }$と$\vec{ b }$のなす角が120°であるとき、$3\vec{ a }-2\vec{ b }$の大きさを求めよう。

②$| \vec{ a } |=5,| \vec{ b } |=3,| \vec{ a } - 2\vec{ b } |=9、3\vec{ a }-2\vec{ b }$のなす角を$\theta$とするとき、$\cos \theta$の値を求めよう。
この動画を見る 
PAGE TOP