北海道大 整数問題 - 質問解決D.B.(データベース)

北海道大 整数問題

問題文全文(内容文):
k,nを自然数とする.
$25×3^n=k^2+176,(k,n)$をすべて求めよ.

2021北海道大過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
k,nを自然数とする.
$25×3^n=k^2+176,(k,n)$をすべて求めよ.

2021北海道大過去問
投稿日:2022.12.30

<関連動画>

整数問題 開明高校

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{3}{n+1}$が整数となるような整数nの値をすべて求めよ。
開明高等学校
この動画を見る 

2023東工大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x^3-x)^2(y^3-y)=86400$
整数$x,y$を求めよ.

2023東工大過去問
この動画を見る 

【高校数学】最大公約数と最小公倍数の例題演習 5-4.5【数学A】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 和が648で最大公約数が72であるような、ともに3桁の2つの自然数を求めよ。

(2) 最大公約数が28で最小公倍数1260であるような自然数a,bの組をすべて求めよ。
  ただし、a$\lt$bとする。
この動画を見る 

東邦(医) 整数 不定方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東邦大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'89東邦大学過去問題
0,n,-n (n自然数)のいずれかが書かれたカードが17枚、和が-24で平方の和は108である。
各カードの枚数とnの値。
この動画を見る 

京大院生 古賀真輝 フェルマーの小定理を証明する

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
フェルマーの小定理を証明していきます.
この動画を見る 
PAGE TOP