大阪大 整数問題 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

大阪大 整数問題 Mathematics Japanese university entrance exam

問題文全文(内容文):
'13大阪大学過去問題
$n+1,n^3+3,n^5+5,n^7+7$
すべてが素数となるような自然数nは存在しないことを示せ
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'13大阪大学過去問題
$n+1,n^3+3,n^5+5,n^7+7$
すべてが素数となるような自然数nは存在しないことを示せ
投稿日:2018.12.01

<関連動画>

福田の数学〜早稲田大学2025社会科学部第1問〜n^pの1の位

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

自然数$n,p$に対して、$n^p$の$1$の位の数を

$f_p(n)$で表す。次の問いに答えよ。

(1)$f_2(n)$の取りうる値をすべて求めよ。

(2)$f_5(n)-f_1(n)$の値を求めよ。

(3)$f_{100}(n)$の取りうる値をすべて求めよ。

$2025$年早稲田大学社会科学部過去問題
この動画を見る 

変形できるかできないかが分かれ目    聖望学園

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{6 \sqrt n}{n}$が自然数となる自然数nは何個?

聖望学園高等学校
この動画を見る 

AkiyaMath様の作成問題① 初コラボ #整数問題 #3次方程式の応用

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$k$:整数
3次方程式
$4x^3-(k+3)x+2k+1=0$の解になる2以上の有理数の総和を求めよ。
この動画を見る 

【数A】整数の性質:互いに素である自然数の個数を丁寧に解説します!

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1~135までの自然数で135と互いに素である自然数の個数は?
この動画を見る 

数学オリンピック 予選の簡単な問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
数学オリンピック予選
$1^{2001}+2^{2001}+3^{2001}+\cdots+2000^{2001}+$
$2001^{2001}$を13で割った余りを求めよ.
この動画を見る 
PAGE TOP