大阪大 整数問題 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

大阪大 整数問題 Mathematics Japanese university entrance exam

問題文全文(内容文):
'13大阪大学過去問題
$n+1,n^3+3,n^5+5,n^7+7$
すべてが素数となるような自然数nは存在しないことを示せ
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'13大阪大学過去問題
$n+1,n^3+3,n^5+5,n^7+7$
すべてが素数となるような自然数nは存在しないことを示せ
投稿日:2018.12.01

<関連動画>

共テ数学90%取る勉強法

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#式と証明#複素数と方程式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#指数関数#対数関数#平均変化率・極限・導関数#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学90%取る勉強法説明動画です
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(7)〜n進法と割り算の余り

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (7)整数Zはn進法で表すとk+1桁であり、$n^k$の位の数が4、$n^i$ (1≦i≦k-1)の位の数が0、$n^0$の位の数が1となる。ただし、nはn≧3を満たす整数、kはk≧2を満たす整数とする。
(i)k=3とする。Zをn+1で割った時の余りは$\boxed{\ \ テ\ \ }$である。
(ii)Zがn-1で割り切れるときのnの値をすべて求めると$\boxed{\ \ ト\ \ }$である。

2023慶應義塾大学薬学部過去問
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第2問〜約数と倍数と最大公約数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数列$\left\{a_n\right\}$を次のように定める。
$a_1=1,  a_{n+1}=a_n^2+1  (n=1,2,3,\ldots)$
(1)正の整数nが3の倍数のとき、$a_n$は5の倍数となることを示せ。
(2)k,nを正の整数とする。$a_n$が$a_k$の倍数となるための必要十分条件をk,nを
用いて表せ。
(3)$a_{2022}$と$(a_{8091})^2$の最大公約数を求めよ。

2022東京大学理系過去問
この動画を見る 

2021関西医科大 絶対値記号・整数問題

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-\vert x \vert y+y^2=3$
整数$(x,y)$を求めよ.

2021関西医科大過去問
この動画を見る 

福田の数学〜整数部分の評価が難しい問題〜北里大学2023年医学部第1問(3)〜漸化式と整数部分の評価

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$a=3+\sqrt{10},b=3-\sqrt{10}$とし、正の整数nに対して$A_n=a^n+b^n$とおく。
このとき、$A_{2} ,A_{3}$の値はそれぞれ$A_{2}=\fbox{ク},A_{3}=\fbox{ケ}$であり、
$A_{n+2}$を$A_{n+1},A_{n}$を用いて表すと$A_{n+2}=\boxed{コ}$である。
また、$a^{111}$の整数部分を$k$とするとき、kを10で割ると$\boxed{サ}$余る。

2023北里大学医過去問
この動画を見る 
PAGE TOP