【数学】東大理科2022大問6ガチ解説!(1)の数え上げ方(抜けもれなく数えるために) - 質問解決D.B.(データベース)

【数学】東大理科2022大問6ガチ解説!(1)の数え上げ方(抜けもれなく数えるために)

問題文全文(内容文):
東大理系数学2022大問6
Oを原点とする座標平面上で考える。0以上の整数kに対して、$\vec{v_k}$を
$\vec{v_k}=\left(\cos\dfrac{2k\pi}{3}\right),\sin\left(\dfrac{2k\pi}{3}\right)$
と定める。投げたとき表と裏がどちらも1/2の確率で出るコインをN回投げて座標平面上に点$X_0,X_1,X_2,…,X_N$を以下の規則(i)(ii)に従って定める。
(i)$X_0$はOにある。
(ii)nを1以上N以下の整数とする。$X_{n_1}$が定まったとし、$X_n$を次のように定める。
・n回目のコイン投げで表が出た場合、
$\vec{OX_n}=\vec{OX_{n-1}}+\vec{v_k}$
により$X_n$を定める。ただし、kは1回目からn回目までのコイン投げで裏が出た回数とする。
・n回目のコイン投げで裏が出た場合、$X_n$を$X_{n-1}$と定める。
(1)$N=8$とする。$X_8$がOにある確率を求めよ。
(2)$N=200$とする。$X_{200}$がOにあり、かつ、合計200回のコイン投げで表がちょうどr回出る確率を$p_r$とおく。ただし$0\leqq r\leqq 200$とする。$p_r$を求めよ。また$p_r$が最大となるrの値を求めよ。
チャプター:

00:00問題文の説明
00:40矢印で戻ってくるように考える
01:15型を作り、求め切る!

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東大理系数学2022大問6
Oを原点とする座標平面上で考える。0以上の整数kに対して、$\vec{v_k}$を
$\vec{v_k}=\left(\cos\dfrac{2k\pi}{3}\right),\sin\left(\dfrac{2k\pi}{3}\right)$
と定める。投げたとき表と裏がどちらも1/2の確率で出るコインをN回投げて座標平面上に点$X_0,X_1,X_2,…,X_N$を以下の規則(i)(ii)に従って定める。
(i)$X_0$はOにある。
(ii)nを1以上N以下の整数とする。$X_{n_1}$が定まったとし、$X_n$を次のように定める。
・n回目のコイン投げで表が出た場合、
$\vec{OX_n}=\vec{OX_{n-1}}+\vec{v_k}$
により$X_n$を定める。ただし、kは1回目からn回目までのコイン投げで裏が出た回数とする。
・n回目のコイン投げで裏が出た場合、$X_n$を$X_{n-1}$と定める。
(1)$N=8$とする。$X_8$がOにある確率を求めよ。
(2)$N=200$とする。$X_{200}$がOにあり、かつ、合計200回のコイン投げで表がちょうどr回出る確率を$p_r$とおく。ただし$0\leqq r\leqq 200$とする。$p_r$を求めよ。また$p_r$が最大となるrの値を求めよ。
投稿日:2022.12.28

<関連動画>

宮崎大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n(n^2+a)$がすべての自然数$n$で6の倍数になる$a$の値を求めよ

出典:2019年宮崎大学 過去問
この動画を見る 

大学入試問題#711「この問題好きすぎ(笑)」 東京理科大学(2013) 極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n^2} \sqrt[ n ]{ {}_{ 4n }P_{2n} }$

出典:2013年トウキョウ理科大学入試問題
この動画を見る 

福田の数学〜東北大学2025文系第3問〜四面体を拡張した四角錐の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

四面体$OABC$において、

$\overrightarrow{OA}=\overrightarrow{a},\overrightarrow{OB}=\overrightarrow{b},\overrightarrow{OC}=\overrightarrow{c}$とする。

点$D$は

$\overrightarrow{AD}=3\overrightarrow{AB}+2\overrightarrow{AC}$を満たすとする。

このとき、以下の問いに答えよ。

(1)四面体$OABC$の体積を$V$とするとき、

四角錐$OABDC$の体積を$V$を用いて表せ。

(2)$\overrightarrow{OD}$を$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$で表せ。


(3)線分$AD$と線分$BC$の交点を$P$とするとき、

$\overrightarrow{OP}$を$\overrightarrow{b},\overrightarrow{c}$を用いて表せ。

(4)四面体$OABC$が$1$辺の長さ$1$の正四面体であるとき、

線分$OD$の長さを求めよ。

$2025$年東北大学文系過去問題
この動画を見る 

福田の数学〜早稲田大学2021年社会科学部第3問〜整式の割り算の余りと整数の余りの割り算の関係

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ $k$を$3$以上の整数とする。k進法で$2021_{k}$と表される整数$N$を考える。次の問いに答えよ。
$(1)N$が$k-1$で割り切れるときの$k$の値を求めよ。

$(2)N$を$k+1$で割ったときの余りを$k$で表せ。

$(3)N$を$k+2$で割ったときの余りが$1$となる$k$を全て求めよ。


2021早稲田大学社会科学部過去問
この動画を見る 

でんがんさん初登場 大阪大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
正の整数m,nが不等式
$\sqrt n \leqq \frac{m}{2} < \sqrt{n+1}$をみたす。以下を示す。
(1)$m^2-4n=0 or 1$
(2)$m < \sqrt n+ \sqrt m < m+1$
この動画を見る 
PAGE TOP