07三重県教員採用試験(数学:10番 不等式) - 質問解決D.B.(データベース)

07三重県教員採用試験(数学:10番 不等式)

問題文全文(内容文):
$\boxed{10}$
$x\gt 0$である.
$e^{x-2} \geqq ax^2$が成り立つ$a$の値の
最大値を求めよ.
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{10}$
$x\gt 0$である.
$e^{x-2} \geqq ax^2$が成り立つ$a$の値の
最大値を求めよ.
投稿日:2021.07.31

<関連動画>

【数Ⅰ】【2次関数】aは正の定数とする。y=|x²-2x|(0≦x≦a)の最大値を求めよ。

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
aは正の定数とする。y=|x²-2x|(0≦x≦a)の最大値を求めよ。
この動画を見る 

【高校数学】2次不等式②~連立不等式・基礎と応用~ 2-12【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$(1)次の連立不等式を解け$
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2+x-2\lt 0 \\
x^2+x\geqq b
\end{array}
\right.
\end{eqnarray}$
$(2)2次関数y=x^2-2mx-m+2\\$
$とx軸の正の部分が異なる2点で交わるように$
$定数mの範囲を求めよ$
この動画を見る 

【数Ⅰ】図形と計量:三角比の表①30°45°60°から!

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・sin30°, sin45°, sin60°の値を求めよ。
・cos30°, cos45°, cos60°の値を求めよ。
・tan30°, tan45°, tan60°の値を求めよ。
この動画を見る 

共通テスト数学1A_第1問を簡単に解く方法教えます

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
[1]$c$を正の整数とする。$x$の2次方程式
  $2x^2+(4c-3)x+2c^2-c-11=0$ について考える。

(1)$c=1$のとき、①の左辺を因数分解すると
  $([ア]x+[イ])(x-[ウ])$
  であるから、①の解は
  $x=-\displaystyle \frac{[イ]}{[ア]},[ウ]$である。

(2)$c=2$のとき、①の解は
  $x=\displaystyle \frac{-[エ] \pm \sqrt{ [オカ] }}{[キ]}$
  であり、大きい方の解を$a$とすると
  $\displaystyle \frac{5}{a}=\displaystyle \frac{[ク] + \sqrt{ [ケコ] }}{[サ]}$
  である。また、$m<\displaystyle \frac{5}{a}<m+1$を満たす整数は[シ]である。

(3)太郎さんと花子さんは、①の解について考察している。
-----------------
太郎:①の解は$c$の値によって、ともに有理数である場合もあれば、
   ともに無理数である場合もあるね。
   $c$がどのような値のときに、解は有理数になるのかな。

花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。
-----------------
①の解が異なる二つの有理数であるような正の整数$c$の個数は[ス]個である。
この動画を見る 

福田のおもしろ数学174〜ルートの付いた数値の計算

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\left(\frac{\sqrt{39}+\sqrt 3}{\sqrt{12}}\right)^7$ を計算してください。
この動画を見る 
PAGE TOP