大学入試問題#690「至高の部分分数分解」 東京女子医科大学(2014)定積分 - 質問解決D.B.(データベース)

大学入試問題#690「至高の部分分数分解」 東京女子医科大学(2014)定積分

問題文全文(内容文):
$\displaystyle \int_{1}^{2} \displaystyle \frac{x^2+2x+2}{x(x+1)(x+2)} dx$

出典:2017年東京女子医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京女子医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} \displaystyle \frac{x^2+2x+2}{x(x+1)(x+2)} dx$

出典:2017年東京女子医科大学 入試問題
投稿日:2023.12.31

<関連動画>

大学入試問題#450「計算の正確性のみを問う問題」 横浜国立大学(2006) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} x^2\sin^3x\ dx$

出典:2006年横浜国立大学 入試問題
この動画を見る 

群馬大/岐阜大 二次関数/二次方程式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#岐阜大学#数学(高校生)#群馬大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
群馬大学過去問題
$y=x^2+ax+2$とA(0,1),B(2,3)を結ぶ線分ABと異なる2点で交わるaの範囲。

岐阜大学過去問題
$mx^2+5(m+1)x+4(m+2)=0$が有理数の解をもつ整数mの値
この動画を見る 

福田の数学〜慶應義塾大学2023年看護医療学部第1問(1)〜交点の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)平行四辺形ABCDにおいて、辺CDの中点をMとし、直線ACと直線BMの交点をPとする。このとき、$\overrightarrow{AM}$, $\overrightarrow{AP}$をそれぞれ$\overrightarrow{AB}$, $\overrightarrow{AD}$を用いて表すと
$\overrightarrow{AM}$=$\boxed{\ \ ア\ \ }$, $\overrightarrow{AP}$=$\boxed{\ \ イ\ \ }$

2023慶應義塾大学看護医療学部過去問
この動画を見る 

福田の数学〜北海道大学2025理系第1問〜指数対数の基本性質と数列

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$\alpha,r$を$\alpha \gt 1,r \gt 1$を満たす実数とする。

数列$\{a_n\}$を$a_1=\alpha$で公比が$r$の等比数列とする。

数列$\{b_n\}$を

$b_n=\log_{a_{n}} (a_{n+1}) (n=1,2,3,\cdots)$で定める。

(1)$b_n$を$n$と$\log_{\alpha}r$を用いて表せ。

$2025$年北海道大学理系過去問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題031〜千葉大学2016年度理系第2問〜格子点の個数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上に5点O$(0,0), A(5,0), B(0,11), P(m,0), Q(0,n)$をとる。
ただし、mとnは$1 \leqq m \leqq 5,1 \leqq n \leqq 11$を満たす整数とする。
(1)三角形OABの内部に含まれる格子点の個数を求めよ。ただし、格子点とは
x座標とy座標が共に整数である点のことであり、内部には辺上の点は含まれない。

(2)三角形OPQの内部に含まれる格子点の個数が三角形OABの内部に含まれる
格子点の個数の半分になるような組(m,n)をすべて求めよ。

2016千葉大学理系過去問
この動画を見る 
PAGE TOP